Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (9): 1666-1679.doi: 10.3724/SP.J.1006.2021.04186

• RESEARCH PAPERS • Previous Articles     Next Articles

Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut

WANG Jian-Guo1,2,4(), ZHANG Jia-Lei1,2, GUO Feng1,2, TANG Zhao-Hui1,2, YANG Sha1,2, PENG Zhen-Ying1,2, MENG Jing-Jing1,2, CUI Li3, LI Xin-Guo1,2,4,*(), WAN Shu-Bo1,2,4,*()   

  1. 1Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
    2Key Laboratory of Crop Genetic Improvement and Ecological Physiology of Shandong Provinces, Jinan 250100, Shandong, China
    3Shandong Center of Crop Germplasm Resources, Jinan 250100, Shandong, China
    4Scientific Observation and Experiment Station of Crop Cultivation in East China, Ministry of Agriculture and Rural Affairs, Dongying 257000, Shandong, China
  • Received:2020-08-12 Accepted:2021-01-21 Online:2021-09-12 Published:2021-02-22
  • Contact: LI Xin-Guo,WAN Shu-Bo E-mail:shanshanyilang@163.com;xinguol@163.com;wanshubo2016@163.com
  • Supported by:
    National Key Research and Development Program of China “Physiological Basis and Agronomic Management for High-quality and High-yield of Field Cash Crops”(2018YFD1000906);Major Scientific and Technological Innovation Projects in Shandong Province(2018YFJH0601);Major Scientific and Technological Innovation Projects in Shandong Province(2019JZZY010702);Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2018D04);Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2018E13)

Abstract:

The purpose of this study was to investigate the effects of calcium and nitrogen fertilizer on dry matter, nitrogen accumulation and distribution, and yield in peanut. A field experiment was conducted using Huayu 25 with two calcium (Ca) rates (0 and 600 kg hm-2), and five nitrogen (N) rates (0, 75, 150, 225, and 300 kg hm-2) in Jiyang (JY) and Yinmaquan (YMQ) in 2019. The results showed that compared with Ca0, the dry matter accumulation of peanuts under Ca600 treatment was significantly increased by 13.5% in the Jiyang, by 12.6% in Yinmaquant. Compared with N0, nitrogen fertilizer significantly promoted the accumulation of dry matter in peanut, and the N75, N150, N225, N300 treatments increased dry matter accumulation by 12.8%, 17.7%, 26.3%, 21.0% in Jiyang and 16.7%, 28.4%, 24.9%, 22.9% in Yinmaquan, respectively. The dynamic curve of peanut dry matter and nitrogen absorption accumulation conformed to the Logistic model, and the maximal nitrogen accumulation (Ym) was obtained under Ca600N225treatment in Jiyang and Ca600N150 treatment Yinmaquan. Compared to the average, the maximal speed of accumulation (Vm), the maximal biomass, duration of rapid accumulation (T), were increased at two plots by 12.4% and 10.6%, 14.9% and 13.7%, 2.3% and 3.1%, respectively. The starting date of rapid accumulation period (t1) was 7.5 days and 9.4 days earlier for nitrogen than for dry matter, indicated that the nutrient absorption of peanut was the premise of dry matter accumulation. The pod yield of peanut of Ca600N225 in Jiyang and Ca600N150 and Ca600N225 in Yinmaquan was higher than other treatments. Effects of interaction between calcium rates and nitrogen rates had a significant impact on peanut yield. Increasing calcium fertilizer application was an important way to improve nitrogen use efficiency, which increased pod number and 100-pod weight and promoted stably high yield in peanut. In this study, calcium fertilizer (600 kg hm-2) and nitrogen fertilizer (75 kg hm-2) were applied as the optimal fertilization scheme in the cultivation of less-fertilizer, stable-yield, and improved-efficiency treatment, while calcium fertilizer (600 kg hm-2) and nitrogen fertilizer (150-225 kg hm-2) as high-yield and high-efficiency treatment.

Key words: peanut, nitrogen fertilizer, calcium fertilizer, dry matter, nitrogen accumulation, yield

Table 1

Dynamic characteristic values of dry matter accumulation under different calcium and nitrogen fertilizer rates in peanut"

处理
Treatment
济阳Jiyang (JY) 饮马泉Yinmaquan (YMQ)
Ym
(kg hm-2)
Vm
(kg hm-2 d-1)
tm
(d)
t1
(d)
t2
(d)
T
(d)
Ym
(kg hm-2)
Vm
(kg hm-2 d-1)
tm
(d)
t1
(d)
t2
(d)
T
(d)
Ca0 13,750 272.6 62.5 45.9 79.1 33.2 14,824 282.4 60.5 43.2 77.8 34.6
Ca600 15,604 312.1 62.6 46.1 79.1 32.9 16,728 307.8 60.5 42.6 78.4 35.8
N0 12,676 267.8 61.9 46.3 77.5 31.2 13,250 261.7 58.3 41.6 75.0 33.3
N75 14,313 291.6 62.3 46.1 78.4 32.3 15,518 290.6 60.5 43.0 78.1 35.2
N150 14,954 296.1 62.4 45.7 79.0 33.3 17,106 314.3 61.0 43.1 78.9 35.8
N225 16,063 308.8 63.0 45.8 80.1 34.3 16,646 305.8 61.2 43.3 79.1 35.8
N300 15,388 298.9 62.8 45.8 79.7 33.9 16,367 304.8 60.9 43.2 78.6 35.4
Ca0×N0 11,732 250.8 61.6 46.2 77.0 30.8 11,844 250.8 55.8 40.2 71.3 31.1
Ca0×N75 13,257 271.4 62.0 45.9 78.1 32.2 14,326 277.2 59.8 42.7 76.8 34.0
Ca0×N150 13,923 278.1 62.1 45.6 78.5 33.0 16,262 301.3 61.6 43.8 79.4 35.5
Ca0×N225 15,266 288.9 63.4 46.0 80.8 34.8 16,045 296.0 62.3 44.4 80.1 35.7
Ca0×N300 14,582 277.4 63.1 45.8 80.4 34.6 15,663 294.5 61.6 44.1 79.1 35.0
Ca600×N0 13,620 285.3 62.2 46.5 77.9 31.4 14,665 276.1 60.1 42.6 77.6 35.0
Ca600×N75 15,369 312.0 63.2 47.0 79.4 32.4 16,716 304.7 61.2 43.1 79.2 36.1
Ca600×N150 15,988 314.5 62.6 45.9 79.3 33.5 17,949 327.6 60.5 42.4 78.5 36.1
Ca600×N225 16,860 329.2 62.5 45.7 79.4 33.7 17,243 316.4 60.1 42.2 78.0 35.9
Ca600×N300 16,194 320.6 62.5 45.9 79.2 33.3 17,073 316.3 60.1 42.4 77.9 35.5
平均Average 14,679 292.8 62.5 46.0 79.0 33.0 15,779 296.1 60.3 42.8 77.8 35.0

Fig. 1

Dry matter accumulation under different calcium and nitrogen fertilizer rates in peanut JY: Jiyang; YMQ: Yinmaquan. Treatments are the same as those given in Table 1. Values are means of three repetitions. "

Table 2

Dynamic characteristic values of nitrogen accumulation under different calcium and nitrogen fertilizer rates in peanut"

处理
Treatment
济阳Jiyang (JY) 饮马泉Yinmaquan (YMQ)
Ym
(kg hm-2)
Vm
(kg hm-2 d-1)
tm
(d)
t1
(d)
t2
(d)
T
(d)
Ym
(kg hm-2)
Vm
(kg hm-2 d-1)
tm
(d)
t1
(d)
t2
(d)
T
(d)
施钙量 Ca rate (kg hm-2)
Ca0 268 5.7 53.8 38.3 69.3 31.0 264 5.7 49.3 34.1 64.5 30.4
Ca600 313 7.2 52.9 38.7 67.2 28.5 306 6.6 48.2 33.0 63.3 30.3
施氮量 N rate (kg hm-2)
N0 225 5.5 52.2 38.8 65.5 26.7 225 5.5 45.8 32.3 59.2 26.9
N75 280 6.4 53.1 38.7 67.6 28.9 275 6.3 47.4 33.1 61.7 28.6
N150 302 6.7 53.3 38.5 68.1 29.6 318 6.6 50.0 34.2 65.8 31.6
N225 334 7.0 54.0 38.2 69.8 31.7 309 6.4 49.7 33.9 65.5 31.5
N300 311 6.7 53.6 38.3 68.8 30.5 297 6.2 49.4 33.7 65.1 31.4
施钙量×施氮量 Ca rate × N rate
Ca0×N0 204 5.1 52.4 39.1 65.7 26.6 205 5.0 46.3 32.7 59.9 27.1
Ca0×N75 256 5.7 53.1 38.3 67.9 29.6 252 6.0 47.1 33.2 61.1 27.9
Ca0×N150 276 5.9 53.5 38.1 69.0 30.8 295 6.2 50.0 34.4 65.6 31.2
Ca0×N225 314 6.1 54.6 37.6 71.6 33.9 290 5.9 51.0 34.8 67.1 32.3
Ca0×N300 292 5.9 54.4 38.1 70.7 32.6 276 5.9 50.1 34.6 65.6 31.0
Ca600×N0 245 6.0 52.0 38.7 65.4 26.7 244 6.0 45.3 32.0 58.6 26.6
Ca600×N75 305 7.1 53.1 39.0 67.3 28.2 298 6.7 47.5 32.9 62.0 29.1
Ca600×N150 329 7.5 53.2 38.7 67.6 28.9 342 7.1 49.5 33.8 65.3 31.5
Ca600×N225 355 7.9 53.5 38.7 68.3 29.6 327 7.0 48.6 33.3 64.0 30.8
Ca600×N300 330 7.7 52.4 38.3 66.5 28.2 319 6.9 47.2 32.0 62.3 30.3
平均Average 291 6.5 53.2 38.5 68.0 29.5 285 6.3 48.3 33.4 63.2 29.8

Fig. 2

Nitrogen accumulation under different calcium and nitrogen fertilizer rates in peanut JY: Jiyang; YMQ: Yinmaquan. Treatments are the same as those given in Table 1. Values are means with three repetitions. "

Table 3

Effects of calcium and nitrogen application on dry matter distribution in peanut"

处理
Treatment
济阳Jiyang (JY) 饮马泉Yinmaquan (YMQ)
营养器官VO
(kg hm-2)
营养器官
VO
(%)
生殖器官
GO
(kg hm-2)
生殖器官
GO
(%)
营养器官
VO
(kg hm-2)
营养器官
VO
(%)
生殖器官
GO
(kg hm-2)
生殖器官
GO
(%)
施钙量 Ca rate (kg hm-2)
Ca0 8065 b 59.2 5593 b 40.8 8054 b 55.0 6622 b 45.0
Ca600 8709 a 56.3 6806 a 43.7 8502 a 51.6 7992 a 48.4
施氮量 N rate (kg hm-2)
N0 7603 c 60.4 5013 d 39.6 7282 c 55.5 5869 d 44.5
N75 8329 b 58.6 5897 c 41.4 8110 b 53.0 7240 c 47.0
N150 8443 b 56.8 6445 b 43.2 8597 a 51.0 8287 a 49.0
N225 8843 a 55.6 7090 a 44.4 8737 a 53.2 7712 b 46.8
N300 8718 a 57.2 6551 b 42.8 8665 a 53.9 7429 c 46.1
施钙量×施氮量 Ca rate × N rate
Ca0×N0 7170 e 61.4 4503 g 38.6 6717 e 57.0 5067 h 43.0
Ca0×N75 7876 d 59.8 5302 f 40.2 7766 d 54.7 6437 g 45.3
Ca0×N150 8077 d 58.4 5763 d 41.6 8418 c 52.4 7647 d 47.6
Ca0×N225 8683 bc 57.4 6450 c 42.6 8743 a 55.2 7101 f 44.8
Ca0×N300 8515 c 58.9 5948 d 41.1 8627 bc 55.7 6858 ef 44.3
Ca600×N0 8036 d 59.3 5523 e 40.7 7848 d 54.1 6668 fg 45.9
Ca600×N75 8780 ab 57.5 6493 c 42.5 8455 bc 51.2 8043 c 48.8
Ca600×N150 8809 ab 55.3 7127 b 44.7 8775 a 49.6 8927 a 50.4
Ca600×N225 9002 a 53.8 7730 a 46.2 8732 a 51.2 8323 b 48.8
Ca600×N300 8920 ab 55.5 7155 b 44.5 8702 ab 52.1 7999 c 47.9
变异来源 Source of variation
施钙量 Calcium (Ca) ** ** ** **
施氮量 Nitrogen (N) ** ** ** **
施钙量×施氮量 Ca×N ns ns ** ns

Table 4

Effects of calcium and nitrogen application on nitrogen distribution in peanut"

处理
Treatment
济阳Jiyang (JY) 饮马泉Yinmaquan (YMQ)
营养器官
VO
(kg hm-2)
营养器官
VO
(%)
生殖器官
GO
(kg hm-2)
生殖器官
GO
(%)
营养器官
VO
(kg hm-2)
营养器官
VO
(%)
生殖器官
GO
(kg hm-2)
生殖器官
GO
(%)
施钙量 Ca rate (kg hm-2)
Ca0 96.8 36.3 170.9 b 63.7 98.8 b 37.7 164.2 b 62.3
Ca600 100.7 a 32.4 211.6 a 67.6 104.3 a 34.3 201.2 a 65.7
施氮量 N rate (kg hm-2)
N0 81.5 e 36.5 143.1 d 63.5 86.5 c 38.7 137.9 e 61.3
N75 96.9 d 34.8 182.9 c 65.2 98.8 b 36.1 175.7 d 63.9
N150 100.9 c 33.6 201.0 b 66.4 107.0 a 33.8 210.6 a 66.2
处理
Treatment
济阳Jiyang (JY) 饮马泉Yinmaquan (YMQ)
营养器官
VO
(kg hm-2)
营养器官
VO
(%)
生殖器官
GO
(kg hm-2)
生殖器官
GO
(%)
营养器官
VO
(kg hm-2)
营养器官
VO
(%)
生殖器官
GO
(kg hm-2)
生殖器官
GO
(%)
N225 108.4 a 32.6 225.2 a 67.4 108.0 a 35.2 199.8 b 64.8
N300 106.0 b 34.3 204.3 b 65.7 107.2 a 36.3 189.4 c 63.7
施钙量×施氮量 Ca rate × N rate
Ca0×N0 78.0 g 38.2 126.2 g 61.8 82.2 d 40.1 122.6 h 59.9
Ca0×N75 94.1 e 36.9 161.0 f 63.1 95.1 c 37.7 156.8 g 62.3
Ca0×N150 98.7 d 35.9 176.6 e 64.1 104.9 ab 35.7 189.0 de 64.3
Ca0×N225 108.0 a 34.5 204.8 c 65.5 106.5 ab 36.9 182.4 e 63.1
Ca0×N300 105.2 ab 36.1 186.1 d 63.9 105.2 ab 38.2 170.0 f 61.8
Ca600×N0 85.0 f 34.7 160.0 f 65.3 90.9 c 37.3 153.2 g 62.7
Ca600×N75 99.6 cd 32.7 204.7 c 67.3 102.6 b 34.5 194.6 d 65.5
Ca600×N150 103.1 bc 31.4 225.3 b 68.6 109.2 a 32.0 232.3 a 68.0
Ca600×N225 108.7 a 30.7 245.5 a 69.3 109.5 a 33.5 217.2 b 66.5
Ca600×N300 106.9 ab 32.4 222.6 b 67.6 109.1 a 34.3 208.9 c 65.7
变异来源Source of variation
施钙量 Calcium (Ca) ** ** ** **
施氮量 Nitrogen (N) ** ** ** **
施钙量×施氮量 Ca×N ns ns ns ns

Table 5

Effects of nitrogen and calcium application on yield and yield component in peanut"

处理
Treatment
济阳Jiyang (JY) 饮马泉Yinmaquan (YMQ)
荚果产量
Pod yield
(kg hm-2)
总果数
Total pods
(×104 pods hm-2)
百果重
100-pod
weight (g)
百仁重
100-kernel
weight (g)
出仁率
Kernel rate
(%)
荚果产量
Pod yield
(kg hm-2)
总果数
Total pods
(×104 pods hm-2)
百果重
100-pod
weight (g)
百仁重
100-kernel
weight (g)
出仁率
Kernel rate
(%)
钙量 Ca rate (kg hm-2)
Ca0 5034 b 330 b 229.0 b 94.6 b 70.6 a 5551 b 345 b 236.3 b 97.3 a 70.3 a
Ca600 5824 a 351 a 236.1 a 95.9 a 70.7 a 62,942 a 366 a 242.7 a 98.8 a 70.5 a
施氮量 N rate (kg hm-2)
N0 4401 d 312 d 218.1 d 92.7 d 70.0 a 5073 d 330 d 225.1 c 95.5 c 69.8 b
N75 5053 c 329 c 230.5 c 95.2 c 70.5 a 5648 c 344 c 238.9 b 98.0 b 70.3 ab
N150 5712 b 347 b 237.0 bc 96.1 c 70.8 a 6486 a 375 a 249.7 a 100.3 a 70.8 a
N225 6172 a 356 a 242.4 b 97.4 b 71.0 a 6348 a 367 b 244.3 ab 99.0 ab 70.6 a
N300 5805 b 352 a 234.8 a 94.8 a 70.8 a 6057 b 363 b 239.6 b 97.5 b 70.5 a
施钙量×施氮量 Ca rate × N rate
Ca0×N0 3903 g 299 f 210.8 f 92.3 d 69.8 c 4686 f 320 f 219.2 e 95.0 c 69.7 c
Ca0×N75 4500 f 313 e 228.3 de 94.4 c 70.6 ab 5219 e 331 e 235.4 c 97.2 b 70.0 bc
Ca0×N150 5379 d 336 c 233.6 cd 95.2 b 70.7 ab 6102 c 361 c 248.7 a 99.7 b 70.7 ab
Ca0×N225 5876 c 347 bc 239.4 bc 96.8 a 71.0 a 6044 c 359 c 241.5 b 98.1 b 70.6 ab
处理
Treatment
济阳Jiyang (JY) 饮马泉Yinmaquan (YMQ)
荚果产量
Pod yield
(kg hm-2)
总果数
Total pods
(×104 pods hm-2)
百果重
100-pod
weight (g)
百仁重
100-kernel
weight (g)
出仁率
Kernel rate
(%)
荚果产量
Pod yield
(kg hm-2)
总果数
Total pods
(×104 pods hm-2)
百果重
100-pod
weight (g)
百仁重
100-kernel
weight (g)
出仁率
Kernel rate
(%)
Ca0×N300 5510 cd 343 c 232.9 cd 94.3 c 70.7 ab 5703 d 355 c 236.8 c 96.7 bc 70.3 abc
Ca600×N0 4900 e 324 d 225.3 e 93.1 d 70.2 bc 5459 e 340 d 231.0 d 95.9 c 69.8 c
Ca600×N75 5606 c 345 c 232.7 cd 96.0 ab 70.5 ab 6078 c 357 c 242.4 b 98.9 ab 70.7 ab
Ca600×N150 6046 b 358 ab 240.3 ab 97.0 a 70.9 ab 6871 a 388 a 250.7 a 100.9 a 70.9 ab
Ca600×N225 6467 a 366 a 245.4 a 98.0 a 71.1 a 6651 a 374 b 247.1 a 99.9 ab 70.7 a
Ca600×N300 6099 b 360 a 236.7 bc 95.4 b 70.9 ab 6412 b 370 b 242.4 b 98.3 b 70.6 ab
变异来源Source of variation
施钙量 Calcium (Ca) ** ** ** * ns ** ** ** * ns
施氮量 Nitrogen (N) ** ** ** ** ** ** ** ** ** **

Fig. 3

Effects of the interaction of calcium and nitrogen fertilizer on pod yield in peanut ** indicates significant correlation at the 0.01 probability level. Values are means with thirty repetitions. "

[1] Zhuang W J, Chen H, Yang M, Wang J P, Pandey M K, Zhang C, Chang W C, Zhang L S, Zhang X T, Tang R H, Garg V, Wang X J, Tang H B, Chow C N, Wang J P, Deng Y, Wang D P, Khan A W, Yang Q, Cai T C, Bajaj P, Wu K C, Guo B Z, Zhang X Y, Li J J, Liang F, Hu J, Liao B S, Liu S Y, Chitikineni A, Yan H S, Zheng Y X, Shan S H, Liu Q Z, Xie D Y, Wang Z Y, Khan S A, Ali N, Zhao C Z, Li X G, Luo Z L, Zhang S B, Zhuang R R, Peng Z, Wang S Y, Mamadou G, Zhuang Y H, Zhao Z Y, Yu W C, Xiong F Q, Quan W P, Yuan M, Li Y, Zuo H S, Xia H, Zha L, Fan J P, Yu J G, Xie W P, Yuan J Q, Chen K, Zhao S S, Chu W T, Chen Y T, Sun P C, Meng F B, Zhuo T, Zhao Y H, Li C J, He G H, Zhao Y L, Wang C C, Kavikishor P B, Pan R L, Paterson A H, Wang X Y, Ming R, Varshney R K. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat Genet, 2019, 51:865-876.
doi: 10.1038/s41588-019-0402-2
[2] 房增国, 赵秀芬, 李俊良. 山东省不同区域花生施肥现状分析. 中国农学通报, 2009, 25(13):129-133.
Fang Z G, Zhao X F, Li J L. The status analysis of fertilizer application on peanut in different region of Shandong province. Chin Agric Sci Bull, 2009, 25(13):129-133 (in Chinese with English abstract).
[3] 吴正锋. 花生高产高效氮素养分调控研究. 中国农业大学博士学位论文, 北京, 2014.
Wu Z F. Nitrogen Management for High Yield and High Efficiency of Peanut. PhD Dissertation of China Agricultural University, Beijing, China, 2014 (in Chinese with English abstract).
[4] 张卫峰, 马林, 黄高强, 武良, 陈新平, 张福锁. 中国氮肥发展、贡献和挑战. 中国农业科学, 2013, 46:3161-3171.
Zhang W F, Ma L, Huang G Q, Wu L, Chen X P, Zhang F S. The development and contribution of nitrogenous fertilizer in China and challenges faced by the country. Sci Agric Sin, 2013, 46:3161-3171 (in Chinese with English abstract).
[5] Ju X T, Kou C L, Zhang F S, Christie P. Nitrogen balance and groundwater nitrate contamination: comparison among three intensive cropping systems on the North China Plain. Environ Poll, 2006, 143:117-125.
doi: 10.1016/j.envpol.2005.11.005
[6] 万书波. 中国花生栽培学. 上海: 上海科学技术出版社, 2003. pp 261-398.
Wan S B. Peanut Cultivation in China. Shanghai: Shanghai Scientific and Technical Publishers, 2003. pp 261-398(in Chinese).
[7] Wang C B, Zheng Y M, Shen P, Zheng Y P, Wu Z F, Sun X U, Yu T Y, Feng H. Determining N supplied sources and N use efficiency for peanut under applications of four forms of N fertilizers labeled by isotope15N. J Integr Agric, 2016, 15:432-439.
doi: 10.1016/S2095-3119(15)61079-6
[8] Manderscheid R, Pacholski A, Frühauf C, Weigel H J. Effects of free air carbon dioxide enrichment and nitrogen supply on growth and yield of winter barley cultivated in a crop rotation. Field Crops Res, 2009, 110:185-196.
doi: 10.1016/j.fcr.2008.08.002
[9] 周卫, 林葆, 朱海舟. 硝酸钙对花生生长和钙素吸收的影响. 土壤通报, 1995, (5):225-227.
Zhou W, Lin B, Zhu H Z. Effect of calcium nitrate on peanut growth and calcium absorption. Chin J Soil Sci, 1995, (5):225-227 (in Chinese with English abstract).
[10] 周录英, 李向东, 王丽丽, 汤笑, 林英杰. 钙肥不同用量对花生生理特性及产量和品质的影响. 作物学报, 2008, 34:879-885.
Zhou L Y, Li X D, Wang L L, Tang X, Lin Y J. Effects of different Ca applications on physiological characteristics, yield and quality in peanut. Acta Agron Sin, 2008, 34:879-885 (in Chinese with English abstract).
[11] 王建国. 水钙互作对南方红壤旱地花生产量影响机制. 湖南农业大学博士学位论文, 湖南长沙, 2017.
Wang J G. The Effective Mechanism of Calcium and Water on Yield of Peanut in Red Soil Upland in Southern of China. PhD Dissertation of Hunan Agricultural University, Changsha, Hunan, China, 2017 (in Chinese with English abstract).
[12] 戴良香, 张智猛, 张冠初, 张杨, 慈敦伟, 秦斐斐, 丁红. 氮肥用量对花生氮素吸收与分配的影响. 核农学报, 2020, 34:370-375.
Dai L X, Zhang Z M, Zhang G C, Zhang Y, Ci D W, Qin F F, Ding H. Effects of nitrogen application on nitrogen uptake and distribution in peanut. J Nucl Agric Sci, 2020, 34:370-375 (in Chinese with English abstract).
[13] Devi M J, Sinclair T R, Vadez V. Genotypic variability among peanut ( Arachis hypogeaL.) in sensitivity of nitrogen fixation to soil drying. Plant Soil, 2010, 330:139-148
doi: 10.1007/s11104-009-0185-9
[14] 王晓云, 李向东, 邹琦. 施氮对花生叶片多胺代谢及衰老的调控作用. 作物学报, 2001, 27:442-446.
Wang X Y, Li X D, Zou Q. Regulation effects of nitrogen application on the polyamine metabolism and senescence of peanut leaves. Acta Agron Sin, 2001, 27:442-446 (in Chinese with English abstract).
[15] 周录英, 李向东, 汤笑, 林英杰, 李宗奉, 李宝龙. 氮、磷、钾肥配施对花生生理特性及产量、品质的影响. 生态学报, 2008, 28:2707-2714.
Zhou L Y, Li X D, Tang X, Lin Y J, Li Z F, Li B L. Effects of N, P, K fertilizer combined application on physiological characteristics, yield and kernel quality of peanut. Acta Ecol Sin, 2008, 28:2707-2714 (in Chinese with English abstract).
[16] Ziaeidoustan H, Azarpour E, Safiyar S. Study the effects of different levels of irrigation interval, nitrogen and superabsorbent on yield and yield component of peanut. Int J Agric Crop Sci, 2013, 5:2071-2078.
[17] 杨吉顺, 李尚霞, 张智猛, 吴菊香, 樊宏. 施氮对不同花生品种光合特性及干物质积累的影响. 核农学报, 2014, 28:154-160.
Yang J S, Li S X, Zhang Z M, Wu J X, Fan H. Effect of nitrogen application on canopy photosynthetic and dry matter accumulation of peanut. J Nucl Agric Sci, 2014, 28:154-160 (in Chinese with English abstract).
[18] Zahran H H. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol R, 1999, 63:968-989.
pmid: 10585971
[19] 张翔, 张新友, 毛家伟, 张玉亭. 施氮水平对不同花生品种产量与品质的影响. 植物营养与肥料学报, 2011, 17:1417-1423.
Zhang X, Zhang X Y, Mao J W, Zhang Y T. Effects of nitrogen fertilization on yield and quality of different peanut cultivars. Plant Nutr Fert Sci, 2011, 17:1417-1423 (in Chinese with English abstract).
[20] 索炎炎, 范瑞兆, 司贤宗, 余琼, 孙艳敏, 毛家伟, 李亮, 余辉. 砂姜黑土区花生优质高产的氮钙硫施肥模型研究. 核农学报, 2019, 33:1448-1456.
Suo Y Y, Fan R Z, Si Z X, Yu Q, Sun Y M, Mao J W, Li L, Yu H. Nitrogen, calcium and sulfur fertilizing model for good quality and high yield of peanuts in Shajiang black soil area. J Nucl Agric Sci, 2019, 33:1448-1456 (in Chinese with English abstract).
[21] 刘颖, 伊淼, 王建国, 郭峰, 张佳蕾, 唐朝辉, 李新国, 万书波. 氮、钙配施对花生根系生长及氮肥利用的影响. 聊城大学学报(自然科学版), 2020, 33(4):98-104.
Liu Y, Yi M, Wang J G, Guo F, Zhang J L, Tang Z H, Li X G, Wan S B. Effects of nitrogen and calcium fertilizers on root growth and nitrogen utilization of peanut. J Liaocheng Univ(Nat Sci Edn), 2020, 33(4):98-104 (in Chinese with English abstract).
[22] 王建国, 张昊, 李林, 刘登望, 万书波, 王飞, 卢山, 郭峰. 施钙与覆膜对缺钙红壤花生氮、磷、钾吸收利用的影响. 中国油料作物学报, 2018, 40:110-118.
Wang J G, Zhang H, Li L, Liu D W, Wan S B, Wang F, Lu S, Guo F. Effects of calcium application and plastic film mulching cultivation on N, P, K accumulation, distribution and utilization efficiency of peanut (Arachis hypogacaL.) in red soil under Ca deficiency. Chin J Oil Crop Sci, 2018, 40:110-118 (in Chinese with English abstract).
[23] 王士红, 杨中旭, 史加亮, 李海涛, 宋宪亮, 孙学振. 增密减氮对棉花干物质和氮素积累分配及产量的影响. 作物学报, 2020, 46:395-407.
Wang S H, Yang Z X, Shi J L, Li H T, Song X L, Sun X Z. Effects of increasing planting density and decreasing nitrogen rate on dry matter, nitrogen accumulation and distribution, and yield of cotton. Acta Agron Sin, 2020, 46:395-407 (in Chinese with English abstract).
[24] 崔党群. Logistic曲线方程的解析与拟合优度测验. 数理统计与管理, 2005, 24(1):112-115.
Cui D Q. Analysis and making good fitting degree test for logistic curve regression equation. J Appl Statist Math, 2005, 24(1):112-115 (in Chinese with English abstract).
[25] 王才斌. 花生营养生理生态与高效施肥. 北京: 中国农业出版社, 2017. pp 34-128.
Wang C B. Peanut Nutrition Physiology and Ecology and Efficient Fertilization. Beijing: China Agriculture Press, 2017. pp 34-128(in Chinese).
[26] Zharare G E, Blamey F C, Asher C J. Effects of pod-zone calcium supply on dry matter distribution at maturity in two groundnut cultivars grown in solution culture. J Plant Nutr, 2012, 35:1542-1556.
doi: 10.1080/01904167.2012.689913
[27] 王建国, 张昊, 李林, 刘登望, 万书波, 王飞, 卢山, 郭峰. 施钙与覆膜栽培对缺钙红壤花生干物质生产、熟相、产量构成及品质的影响. 华北农学报, 2018, 33(4):131-138.
Wang J G, Zhang H, Li L, Liu D W, Wan S B, Wang F, Lu S, Guo F. Effects of calcium fertilizer and plastic film mulching cultivation on dry matter production, maturity performance, yield components and quality of peanut in red soil under Ca deficiency. Acta Agric Boreali-Sin, 2018, 33(4):131-138 (in Chinese with English abstract).
[28] Yang S, Li L, Zhang J L, Geng Y, Guo F, Wang J G, Meng J J, Sui N, Wan S B, Li X G. Transcriptome and differential expression profiling analysis of the mechanism of Ca2+ regulation in peanut (Arachis hypogaea) pod development. Front Plant Sci, 2017, 8:1609.
doi: 10.3389/fpls.2017.01609 pmid: 29033956
[29] 孙虎, 李尚霞, 王月福, 王铭伦. 施氮量对不同花生品种积累氮素来源和产量的影响. 植物营养与肥料学报, 2010, 16:153-157.
Sun H, Li S X, Wang Y F, Wang M L. Effects of nitrogen application on source of nitrogen accumulation and yields of different peanut cultivars. Plant Nutr Fert Sci, 2010, 16:153-157 (in Chinese with English abstract)
[30] 张智猛, 戴良香, 慈敦伟, 张冠初, 田家明, 秦斐斐, 徐扬, 丁红. 生育后期干旱胁迫与施氮量对花生产量及氮素吸收利用的影响. 中国油料作物学报, 2019, 41:614-621.
Zhang Z M, Dai L X, Ci D W, Zhang G C, Tian J M, Qin F F, Xu Y, Ding H. Drought effects at late growth stage and nitrogen application rate on yield and N utilization of peanut. Chin J Oil Crop Sci, 2019, 41:614-621 (in Chinese with English abstract).
[31] Adams F, Hartzog D L. The nature of yield responses of Florunner peanuts to lime. Peanut Sci, 1980, 7:120-123.
doi: 10.3146/i0095-3679-7-2-15
[32] Adams J F, Hartzog D L, Nelson D B. Supplemental calcium application on yield, grade, and seed quality of runner peanut. Agron J, 1993, 85:86-93.
doi: 10.2134/agronj1993.00021962008500010018x
[33] 孙虎, 王月福, 王铭伦, 赵长星. 施氮量对不同类型花生品种衰老特性和产量的影响. 生态学报, 2010, 30:2671-2677.
Sun H, Wang Y F, Wang M L, Zhao C X. Effects of nitrogen fertilizer rate on senescence characteristics and yield of different peanut (Arachis hypogaea L.) cultivars. Acta Ecol Sin, 2010, 30:2671-2677 (in Chinese with English abstract).
[34] 张佳蕾, 郭峰, 孟静静, 杨莎, 耿耘, 杨佃卿, 李元高, 张文生, 李新国, 万书波. 钙肥对旱地花生生育后期生理特性和产量的影响. 中国油料作物学报, 2016, 38:321-327.
Zhang J L, Guo F, Meng J J, Yang S, Geng Y, Yang D Q, Li Y G, Zhang W S, Li X G, Wan S B. Effects of calcium fertilizer on physiological characteristics at late growth stage and pod yield of peanut on dryland. Chin J Oil Crop Sci, 2016, 38:321-327 (in Chinese with English abstract).
[35] 丁红, 张智猛, 戴良香, 杨吉顺, 慈敦伟, 秦斐斐, 宋文武, 万书波. 水氮互作对花生根系生长及产量的影响. 中国农业科学, 2015, 48:872-881.
Ding H, Zhang Z M, Dai L X, Yang J S, Ci D W, Qin F F, Song W W, Wan S B. Effects of water and nitrogen interaction on peanut root growth and yield. Sci Agric Sin, 2015, 48:872-881 (in Chinese with English abstract).
[36] 郑永美, 王春晓, 刘岐茂, 吴正锋, 王才斌, 孙秀山, 郑亚萍. 氮肥对花生根系生长和结瘤能力的调控效应. 核农学报, 2017, 31:2418-2425.
Zheng Y M, Wang C X, Liu Q M, Wu Z F, Wang C B, Sun X S, Zheng Y P. Effect of nitrogen fertilizer regulation on root growth and nodulating ability of peanut. J Nucl Agric Sci, 2017, 31:2418-2425 (in Chinese with English abstract).
[37] 刘俊华, 吴正锋, 沈浦, 于天一, 郑永美, 孙学武, 李林, 陈殿绪, 王才斌, 万书波. 氮肥与密度互作对单粒精播花生根系形态、植株性状及产量的影响. 作物学报, 2020, 46:1605-1616.
Liu J H, Wu Z F, Shen P, Yu T Y, Zheng Y M, Sun X W, Li L, Chen D X, Wang C B, Wan S B. Effects of nitrogen and density interaction on root morphology, plant characteristic and pod yield under single seed planting in peanut. Acta Agron Sin, 2020, 46:1605-1616 (in Chinese with English abstract).
[38] 史晓龙, 戴良香, 宋文武, 丁红, 慈敦伟, 张智猛, 石书兵. 施用钙肥对盐胁迫条件下花生生长发育和产量的影响. 花生学报, 2017, 46(2):40-46.
Shi X L, Dai L X, Song W W, Ding H, Ci D W, Zhang Z M, Shi S B. Effects of calcium fertilizer application on development and yield of peanut under salt stress. J Peanut Sci, 2017, 46(2):40-46 (in Chinese with English abstract).
[39] Rogers H T. Liming for peanuts in relation to exchangeable soil calcium and effect on yield, quality, and uptake of calcium and potassium. J Am Soc Agron, 1948, 40:15-31.
doi: 10.2134/agronj1948.00021962004000010002x
[40] 孙晨桐. 氮肥水平对花生生长发育及氮素利用的影响. 沈阳农业大学硕士学位论文, 辽宁沈阳, 2019.
Sun C T. Effects of Nitrogen Levels on Growth and Nitrogen Utilization of Peanut. MS Thesis of Shenyang Agricultural University, Shenyang, Liaoning, China, 2019 (in Chinese with English abstract).
[41] 余常兵, 李银水, 谢立华, 胡小加, 廖伯寿, 陈防, 廖星. 湖北省花生平衡施肥技术研究: IV. 农户花生施肥状况. 湖北农业科学, 2011, 50:4354-4356.
Yu C B, Li Y S, Xie L H, Hu X J, Liao B S, Chen F, Liao X. Study on peanut balanced fertilization technique in Hubei province: IV. Status of farmer peanut fertilization. Hubei Agric Sci, 2011, 50:4354-4356 (in Chinese with English abstract).
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] QIN Lu, HAN Pei-Pei, CHANG Hai-Bin, GU Chi-Ming, HUANG Wei, LI Yin-Shui, LIAO Xiang-Sheng, XIE Li-Hua, LIAO Xing. Screening of rapeseed germplasms with low nitrogen tolerance and the evaluation of its potential application as green manure [J]. Acta Agronomica Sinica, 2022, 48(6): 1488-1501.
[6] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[7] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[8] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[9] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[10] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[11] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[12] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[13] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[14] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[15] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!