[1] |
Sturaro M, Motto M, Hemantaranjan A. Plant cuticular waxes: biosynthesis and functions. Adv Plant Physiol, 2006, 9:229-251.
|
[2] |
Yeats T H, Rose J K C. The formation and function of plant cuticles. Plant Physiol, 2013, 163:5-20.
|
[3] |
Dehesh K, Tai H, Edwards P, Byrne J, Jaworski J G. Overexpression of 3-ketoacyl-acyl-carrier protein synthase IIIs in plants reduces the rate of lipid synthesis. Plant Physiol, 2001, 125:1103-1114.
|
[4] |
Leibundgut M, Jenni S, Frick C, Ban N. Structural basis for substrate delivery by acyl carrier protein in the yeast fatty acid synthase. Science, 2007, 316:288-290.
|
[5] |
LiBeisson Y, Shorrosh B, Beisson F, Andersson M X, Arondel V, Bates P D, Baud S, Bird D, DeBono A, Durrett T P. Acyl-lipid metabolism. Arabidopsis Book, 2010, 8:e0133.
|
[6] |
Bernard A, Domergue F, Pascal S, Jetter R, Renne C, Faure J D, Haslam R P, Napier J A, Lessire R, Joubès J. Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex. Plant Cell, 2012, 24:3106-3118.
|
[7] |
Owen R, Huanquan Z, Hepworth S R, Patricia L, Reinhard J, Ljerka K. CER4 encodes an alcohol-forming fatty acyl-coenzyme A reductase involved in cuticular wax production in Arabidopsis. Plant Physiol, 2006, 142:866-877.
|
[8] |
Wang M, Wang Y, Wu H, Xu J, Li T, Hegebarth D, Jetter R, Chen L, Wang Z. Three TaFAR genes function in the biosynthesis of primary alcohols and the response to abiotic stresses in Triticum aestivum. Sci Rep, 2016, 6:25008.
|
[9] |
Tulloch A P. Composition of leaf surface waxes of Triticum species: variation with age and tissue. Phytochemistry, 1973, 12:2225-2232.
|
[10] |
Wettstein-Knowles P V, Søgaard B. The cer-cqu region in barley: gene cluster or multifunctional gene. Carlsberg Res Commun, 1980, 45:125-141.
|
[11] |
Zhang Z, Wang W, Li W. Genetic interactions underlying the biosynthesis and inhibition of beta-diketones in wheat and their impact on glaucousness and cuticle permeability. PLoS One, 2013, 8:e54129.
|
[12] |
Hen-Avivi S, Savin O, Racovita R C, Lee W S, Adamski N M, Malitsky S, Almekias-Siegl E, Levy M, Vautrin S, Berges H, Friedlander G, Kartvelishvily E, Ben-Zvi G, Alkan N, Uauy C, Kanyuka K, Jetter R, Distelfeld A, Aharoni A. A metabolic gene cluster in the wheat W1 and the barley Cer-cquloci determines beta-diketone biosynthesis and glaucousness. Plant Cell, 2016, 28:1440-1460.
|
[13] |
Pighin J A, Huanquan Z, Balakshin L J, Goodman I P, Western T L, Reinhard J, Ljerka K, A Lacey S. Plant cuticular lipid export requires an ABC transporter. Science, 2004, 306:702-704.
|
[14] |
Debono A, Yeats T H, Rose J K C, Bird D, Jetter R, Kunst L, Samuels L. ArabidopsisLTPG is a glycosylphosphatidylinositol-anchored lipid transfer protein required for export of lipids to the plant surface. Plant Cell, 2009, 21:1230-1238.
|
[15] |
Li L, Chai L, Xu H, Zhai H, Wang T, Zhang M, You M, Peng H, Yao Y, Hu Z, Xin M, Guo W, Sun Q, Chen X, Ni Z. Phenotypic characterization of the glossy1 mutant and fine mapping of GLOSSY1 in common wheat(Triticum aestivum L.). Theor Appl Genet, 2021, 134:835-847.
|
[16] |
Marioni J C, Mason C E, Mane S M, Stephens M, Gilad Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res, 2008, 18:1509-1517.
|
[17] |
Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15:550.
|
[18] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25:402-408.
|
[19] |
Young M D, Wakefield M J, Smyth G K, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol, 2010, 11:R14.
|
[20] |
Chen Y, Song W, Xie X, Wang Z, Guan P, Peng H, Jiao Y, Ni Z, Sun Q, Guo W. A collinearity-incorporating homology inference strategy for connecting emerging assemblies in triticeae tribe as a pilot practice in the plant pangenomic era. Mol Plant, 2020, 13:1694-1708.
|
[21] |
Huang D, Feurtado J A, Smith M A, Flatman L K, Koh C, Cutler A J. Long noncoding miRNA gene represses wheat beta- diketone waxes. Proc Natl Acad Sci USA, 2017, 114:E3149-E3158.
|
[22] |
Liu Y, Wang H, Jiang Z, Wang W, Xu R, Wang Q, Zhang Z, Li A, Liang Y, Ou S, Liu X, Cao S, Tong H, Wang Y, Zhou F, Liao H, Hu B, Chu C. Genomic basis of geographical adaptation to soil nitrogen in rice. Nature, 2021, 590:600-605.
|
[23] |
Li L, Qi Z, Chai L, Chen Z, Wang T, Zhang M, You M, Peng H, Yao Y, Hu Z, Xin M, Guo W, Sun Q, Ni Z. The semidominant mutation w5 impairs epicuticular wax deposition in common wheat(Triticum aestivum L.). Theor Appl Genet, 2020, 133:1213-1225.
|
[24] |
Adamski N M, Bush M S, Simmonds J, Turner A S, Mugford S G, Jones A, Findlay K, Pedentchouk N, von Wettstein-Knowles P, Uauy C. The inhibitor of wax 1 locus(Iw1) prevents formation of beta- and OH-beta-diketones in wheat cuticular waxes and maps to a sub-cM interval on chromosome arm 2BS. Plant J, 2013, 74:989-1002.
|
[25] |
Bianchi G, Figini M L. Epicuticular waxes of glaucous and nonglaucous durum wheat lines. J Agric Food Chem, 1986, 34:429-433.
|
[26] |
Chen G, Komatsuda T, Ma J F, Nawrath C, Pourkheirandish M, Tagiri A, Hu Y G, Sameri M, Li X, Zhao X, Liu Y, Li C, Ma X, Wang A, Nair S, Wang N, Miyao A, Sakuma S, Yamaji N, Zheng X, Nevo E. An ATP-binding cassette subfamily G full transporter is essential for the retention of leaf water in both wild barley and rice. Proc Natl Acad Sci USA, 2011, 108:12354-12359.
|
[27] |
Cameron K D, Teece M A, Smart L B. Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol, 2006, 140:176-183.
|