Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (7): 1569-1582.doi: 10.3724/SP.J.1006.2022.12044

• OCROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Characterization and genetic mapping of a classic-abortive-type recessive genic-male-sterile mutant ap90 in rice (Oryza sativa L.)

CHEN Chi1,2(), CHEN Dai-Bo2(), SUN Zhi-Hao2, PENG Ze-Qun2, Adil Abbas2, HE Deng-Mei2, ZHANG Ying-Xin2, CHENG Hai-Tao1, YU Ping2, MA Zhao-Hui1, SONG Jian3, CAO Li-Yong2, CHENG Shi-Hua2, SUN Lian-Ping2,*(), ZHAN Xiao-Deng2,*(), LYU Wen-Yan1,*()   

  1. 1College of Agronomy, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
    2China National Rice Research Institute / National Center for Rice Improvement / Key Laboratory for Zhejiang Super Rice Research / State Key Laboratory of Rice Biology, Hangzhou 311401, Zhejiang, China
    3Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
  • Received:2021-06-29 Accepted:2021-10-19 Online:2022-07-12 Published:2021-11-03
  • Contact: SUN Lian-Ping,ZHAN Xiao-Deng,LYU Wen-Yan E-mail:595954943@qq.com;chendaibo@caas.cn;sunlianping@caas.cn;zhanxiaodeng@caas.cn;lwyzrx@syau.edu.cn
  • About author:First author contact:

    **Contributed equally to this work

  • Supported by:
    Natural Science Foundation of Zhejiang Province of China(LY17C130003);Natural Science Foundation of Zhejiang Province of China(LY21C130003);Open Project of State Key Laboratory of Rice Biology(20200105);National Natural Science Foundation of China(31801440);Chinese Academy of Agricultural Sciences Innovation Project(CAAS-ASTIP-2013-CNRRI);Liaoning Provincial Major Science and Technology Projects(2019JH1/10200001)

Abstract:

In this study, we obtained a stable male sterile mutant abortive pollen 90 (ap90) from the mutant library of Zhonghui 8015 (wild-type, WT), an indica restorer line, induced by Ethyl Methy Sulfone (EMS). Compared to the WT, the ap90 mutant displayed no significant differences in plant height, plant type, tiller number, heading date and other agronomic traits, but the anthers were thinner, light creamy yellow and pollen grains were completely abortive. Semi-thin sections observation of anther development at different stages showed that the ap90 mutant carried an abnormal development process of anther wall cells. Namely, the tapetum cell degradation was obviously abnormal, the microspore cells could not form a normal pollen wall structure during mitosis and the starch filling process was blocked which eventually resulted in the degradation of microspores into threadlets and failure of anther dehiscence. Scanning electron microscopic (SEM) observations of the anther surface and pollen exine suggested that the anther epidermis of mutant ap90 were shrunk and covered by more compactly arranged cuticles. The shape of Ubisch distributed on the inner surface of anther locule were irregular, closely arranged and disordered. The pollen grains were shriveled and the sporopollenin on the pollen exine were abnormally arranged. Genetic analysis showed that the ap90 phenotype was controlled by a pair of recessive nuclear genes. Gene preliminary mapping located the mutation site into a 491.73 kb interval between RM21421 and RM21435 on the long arm of rice chromosome 7. Further Mut-Map sequencing analysis confirmed that there was a 37 bp deletion and a following single base substitution in the second exon region of LOC_Os07g22850 in the ap90 mutant, which resulted in the shifted coding sequence, prematurely terminated transcription and translation, leading to the entire abortive pollen and sterile spikelet in the ap90 mutant. Expression pattern analysis results demonstrated that the OsAP90 gene was specifically expressed in anthers and the OsAP90 protein was mainly located in the endoplasmic reticulum (ER). The qPCR results suggested that the relative expression level of many male sterility-related genes in the ap90 mutant was affected by the mutation site, which further proved that OsAP90 played an important role during the formation of Ubisch and pollen wall in rice anther development.

Key words: rice, recessive genic male sterility, ap90, Mut-Map, the relative expression pattern

Fig. 1

Phenotypic comparison of wild type Zhonghui 8015 (WT) and the ap90 mutant A: single plant of WT Zhonghui 8015 and the ap90 mutant at heading stage; bars: 10 cm. B: spikelets of WT and the ap90 mutant; C: flowers of WT and the ap90 mutant, the lemma and palea have been removed for clarity; D: anther of WT and the ap90 mutant; bars: 2 nm. E: I2-KI staining of pollen grains of WT; F: anther tablet of the ap90 mutant; bar: 0.1 mm."

Fig. 2

Transverse section analysis of anthers at different developmental stages in WT andap90 Locules from the anther section of WT (A to E) and ap90 (F to J) were shown as above, respectively. A and F are cross-section of anthers at the stage 8a; B and G are cross-section of anthers at the stage 9; C and H are cross-section of anthers at the stage 10; D and I are cross-section of anthers at the stage 11; E and J are cross-section of anthers at the stage 12. Ep: epidermis; En: endothecium; ML: middle layer; T: tapetum; Dy: dyad cell; Tds: tetrads; Msp: microspore; Bp: biceullar pollen; Mp: mature pollen."

Fig. 3

SEM observation of the anther surface and pollen grains in WT and the ap90 mutant A, B: the anther morphologies of WT and ap90 at stage 12 are shown as above respectively; C-F: anther epidermis; G, H: anthers inner; I, J: pollen cell; K-N: pollen exine. aUb: abnormal Ubisch; Ub: Ubisch; dSp: deformed Sporopollenin; Sp: sporopollenin. Magnifications are labeled in the figures."

Table 1

Genetic analysis of the ap90 locus"

组合
Combination
F1单株结实率
Seed-setting rate of F1
F2 χ(3:1) χ20.05
野生型 No. of wild type plants 突变体 No. of mutant plants
ap90/ZH8015 82.32 365 115 0.28 3.84
ap90/02428 86.59 3322 1078 0.59

Fig. 4

Mapping cloning of the male sterile gene OsAP90 A: genetic linkage and primary mapping of the ap90 locus; B: fine mapping of the AP90 locus using Mut-Map method; C: gene structure of the target gene and the ap90 mutation site; D: predicted protein change of the ap90 mutation; E: identification of separation ratio in the BC2F2 population using new-designed functional markers. M: DNA marker, 2000 bp."

Fig. 5

Tissue-specific expression pattern of the male infertility gene OsAP90 Ubiquitin was used as an internal control gene and error bars was the SDs (n = 3). MMCS, MS, YMS, PMS, and MPS indicate microspore mother cell stage, meiosis stage, young microspore cell stage, pollen mitosis stage, and mature pollen stage during anther development, respectively. WT: wild type; ap90: mutant. All data are shown as means ± SDs (n = 3). ** significant at P=0.01; * significant at P = 0.05."

Fig. 6

Subcellular localization of the AP90 protein"

Fig. 7

Relative expression profile of the genes regulating anther development in WT and the ap90 anthers Ubiquitin was used as an internal control gene and error bars show the SD (n = 3). MMCS, MS, YMS, PMS, and MPS indicate microspore mother cell stage, meiosis stage, young microspore cell stage, pollen mitosis stage, and mature pollen stage during anther development, respectively. WT: wild type; ap90: mutant. All data are shown as means ± SDs (n = 3). ** significant at P = 0.01, * significant at P = 0.05."

[1] 朱英国. 水稻雄性不育生物学. 武汉: 武汉大学出版社, 2000. pp 1-2.
Zhu Y G. Biology of Male Sterility in Rice. Wuhan: Wuhan University Press, 2000. pp 1-2.(in Chinese)
[2] Zhang D B, Zoe A. Wilson. Stamen specification and anther development in rice. Chin Sci Bull, 2009, 54: 2342-2353.
doi: 10.1007/s11434-009-0348-3
[3] Zhang D B, Luo X, Zhu L. Cytological analysis and genetic control of rice anther development. J Genet Genomics, 2011, 38: 379-390.
doi: 10.1016/j.jgg.2011.08.001
[4] Ma H. Molecular genetic analyses of microsporogenesis and microgame to genesis in flowering plants. Annu Rev Plant Biol, 2005, 56: 393-434.
doi: 10.1146/annurev.arplant.55.031903.141717
[5] Sanders P M, Bui A Q, Weterings K, McIntire K N, Hsu Y C, Lee P Y, Truong M T, Beals T P, Goldberg R B. Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod, 1999, 11: 297-322.
doi: 10.1007/s004970050158
[6] 彭泽群, 龚柯, 陈代波, 李延慧, 孙志豪, 陈驰, 于萍, 张迎信, 周正平, 廖飞飞, 程式华, 曹立勇, 占小登, 孙廉平. 水稻雄性不育突变体tip2-zh的鉴定与基因定位. 植物遗传资源学报, 2021, 22: 1068-1080.
Peng Z Q, Gong K, Chen D B, Li Y H, Sun Z H, Chen C, Yu P, Zhang Y X, Zhou Z P, Liao F F, Cheng S H, Cao L Y, Zhan X D, Sun L P. Characterization and genetic mapping of a no-pollen male sterility mutant tip2-zh in rice(Oryza sativa L.). J Plant Genet Resour, 2021, 22: 1068-1080.(in Chinese with English abstract)
[7] Jung K H, Han M J, Lee Y S, Kim Y W, Hwang I, Kim M J, Kim Y K, Nahm B H, An G. RiceUndeveloped Tapetum1is a major regulator of early tapetum development. Plant Cell, 2005, 17:2705-2722.
pmid: 16141453
[8] 杨正福, 张迎信, 孙廉平, 张沛沛, 轩丹丹, 刘嶺, 胡霞, 李紫荷, 占小登, 吴玮勋, 曹立勇, 程式华. 水稻雄性不育突变体gamyb的鉴定与基因定位. 中国水稻科学, 2016, 30: 143-151.
Yang Z F, Zhang Y X, Sun L P, Zhang P P, Xuan D D, Liu L, Hu X, Li Z H, Zhan X D, Wu W X, Cao L Y, Cheng S H. Identification and gene mapping of male sterile mutant gamyb5 in rice. Chin J Rice Sci, 2016, 30: 143-151.(in Chinese with English abstract)
[9] Li N, Zhang D S, Liu H S, Yin C S, Li X X, Liang W Q, Yuan Z, Xu B, Chu H W, Wang J, Wen T Q, Huang H, Luo D, Ma H, Zhang D B. The rice Tapetum Degeneration Retardation gene is required for tapetum degradation and anther development. Plant Cell, 2006, 18: 2999-3014.
doi: 10.1105/tpc.106.044107
[10] Yang Z F, Liu L, Sun L P, Yu P, Zhang P P, Abbas A, Xiang X J, Wu W X, Zhang Y X, Cao L Y, Cheng S H. OsMS1functions as a transcriptional activator to regulate programmed tapetum development and pollen exine formation in rice. Plant Mol Biol, 2019, 99: 175-191.
doi: 10.1007/s11103-018-0811-0
[11] Li H, Zheng Y, Gema V B, Yang C Y, Liang W Q, Zong J, Wilson Z A, Zhang D B. PERSISTENT TAPETAL CELL1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in rice. Plant Physiol, 2011, 156: 615-630.
doi: 10.1104/pp.111.175760
[12] Muhammad U, Xu D W, Lukas S, Shi J X, Liang W Q, Jung K H, Chen M J, Luo Z J, Zhang Y Y, Yu J, Zhang D B. PERSISTENT TAPETAL CELL2 is required for normal tapetal programmed cell death and pollen wall patterning. Plant Physiol, 2020, 182: 962-976.
doi: 10.1104/pp.19.00688 pmid: 31772077
[13] Niu N N, Liang W Q, Yang X J, Jin W L, Wilson Z A, Hu J P, Zhang D B. EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nature Commun, 2013, 4: 1445.
doi: 10.1038/ncomms2396
[14] Ji C H, Li H Y, Chen L B, Xie M, Wang F P, Chen Y L, Liu Y G. A novel rice bHLH transcription factor, DTD, acts coordinately with TDR in controlling tapetum function and pollen development. Mol Plant, 2013, 6: 1715-1718.
doi: 10.1093/mp/sst046
[15] Ono S, Liu H, Tsuda K, Fukai E, Tanaka K, Sasaki T, Nonomura K I. EAT1 transcription factor, a non-cell-autonomous regulator of pollen production, activates meiotic small RNA biogenesis in rice anther tapetum. PLoS Genet, 2018, 14: e1007238.
doi: 10.1371/journal.pgen.1007238
[16] Yu J, Meng Z L, Liang W Q, Behera S, Kudla J, Tucker M R, Luo Z J, Chen M J, Xu D W, Zhao G C, Wang J, Zhang S Y, Kim Y J, Zhang D B. A rice Ca2+ Binding protein is required for tapetum function and pollen formation. Plant Physiol, 2016, 172: 1772-1786.
doi: 10.1104/pp.16.01261
[17] Xiang X J, Sun Li P, Yu P, Yang Z F, Zhang P P, Zhang Y X, Wu W X, Chen D B, Zhan X D, Muhammad K R, Abbas A, Cheng S H, Cao L Y. The MYB transcription factor Baymax1 plays a critical role in rice male fertility. Theor Appl Genet, 2021, 134: 453-471.
doi: 10.1007/s00122-020-03706-w
[18] Pan X Y, Yan W, Chang Z Y, Xu Y C, Luo M, Xu C J, Chen Z F, Wu J X, Tang X Y. OsMYB80 regulates anther development and pollen fertility by targeting multiple biological pathways. Plant Cell Physiol, 2020, 61: 988-1004.
doi: 10.1093/pcp/pcaa025
[19] Phan H A, Li S F, Parish R W. MYB80, a regulator of tapetal and pollen development, is functionally conserved in crops. Plant Mol Biol, 2012, 78: 171-183.
doi: 10.1007/s11103-011-9855-0 pmid: 22086333
[20] Zhang S, Fang Z J, Zhu J, Gao J F, Yang Z N. OsMYB103 is required for rice anther development by regulating tapetum development and exine formation. Chin Sci Bull, 2010, 55: 3288-3297.
doi: 10.1007/s11434-010-4087-2
[21] Bai W T, Wang P R, Hong J, Kong W Y, Xiao Y J, Yu X W, Zheng H, You S M, Lu J Y, Lei D K, Wang C L, Wang Q M, Liu S J, Liu X, Tian Y L, Chen L M, Jiang L, Zhao Z G, Wu C Y, Wan J M. Earlier Degraded Tapetum1 (EDT1) encodes an ATP-Citrate lyase required for tapetum programmed cell death. Plant Physiol, 2019, 181: 1223-1238.
doi: 10.1104/pp.19.00202
[22] Ko S, Li M, Ku M S, Ho Y, Lin Y, Chuang M, Hsing H, Lien Y, Yang H, Chang H, Chan M. ThebHLH142 transcription factor coordinates with TDR1 to modulate the expression of EAT1 and regulate pollen development in rice. Plant Cell, 2014, 26: 2486-2504.
doi: 10.1105/tpc.114.126292
[23] Fu Z Z, Yu J, Cheng X W, Zong X, Xu J, Chen M J, Li Z Y, Zhang D B, Liang W Q. The rice Basic Helix-Loop-Helix transcription factor TDR INTERACTING PROTEIN2 is a central switch in early anther development. Plant Cell, 2014, 26: 1512-1524.
doi: 10.1105/tpc.114.123745
[24] Yang Z F, Sun L P, Zhang P P, Zhang Y X, Yu P, Liu L, Abbas A, Xiang X J, Wu W X, Zhan X D, Cao L Y, Cheng S H. TDR INTERACTING PROTEIN 3, encoding a PHD-finger transcription factor, regulates Ubisch bodies and pollen wall formation in rice. Plant J, 2019, 99: 844-861.
doi: 10.1111/tpj.14365
[25] Li H, Pinot F, Sauveplane V, Werck-Reichhart D, Diehl P, Schreiber L, Franke R, Zhang P, Chen L, Gao Y W, Liang W Q, Zhang D B. Cytochrome P450 family member CYP704B2 catalyzes the ω-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. Plant Cell, 2010, 22: 173-190.
doi: 10.1105/tpc.109.070326
[26] 轩丹丹, 孙廉平, 张沛沛, 张迎信, 吴玮勋, 杨正福, 占小登, 沈希宏, 曹立勇, 程式华. 水稻无花粉型核雄性不育突变体whf41的鉴定与基因定位. 中国水稻科学, 2017, 31: 247-256.
Xuan D D, Sun L P, Zhang P P, Zhang Y X, Wu W X, Yang Z F, Zhan X D, Shen X H, Cao L Y, Cheng S H. Characterization and gene mapping of a no-pollen genic sterile mutant whf41 in rice. Chin J Rice Sci, 2017, 31: 247-256.(in Chinese with English abstract)
[27] Yang X J, Wu D, Shi J X, He Y, Franck P, Bernard G, Yin C S, Zhu L, Chen M J, Luo Z J, Liang W Q, Zhang D B. Rice CYP703A3, a cytochrome P450 hydroxylase, is essential for development of anther cuticle and pollen exine. J Integr Plant Boil, 2014, 56: 979-994.
[28] Yang Z F, Zhang Y X, Sun L P, Zhang P P, Liu L, Yu P, Xuan D D, Xiang X J, Wu W X, Cao L Y, Cheng S H. Identification of cyp703a3-3 and analysis of regulatory role of CYP703A3 in rice anther cuticle and pollen exine development. Gene, 2018, 649: 63-73.
doi: 10.1016/j.gene.2018.01.058
[29] Cao H, Li X Y, Wang Z, Ding M, Sun Y Z, Dong F Q, Chen F Y, Liu L A, Doughty J, Yong Li Y, Liu Y X. Histone H2B Monoubiquitination mediated by HISTONE MONOUBIQUITINATION1 and HISTONE MONOUBIQUITINATION2 is involved in anther development by regulating tapetum degradation-related genes in rice. Plant Physiol, 2015, 168: 1389-405.
doi: 10.1104/pp.114.256578
[30] Zhang D S, Liang W Q, Yin C S, Zong J, Gu F W, Zhang D B. OsC6, encoding a lipid transfer protein, is required for postmeiotic anther development in rice. Plant Physiol, 2010, 154: 149-162.
doi: 10.1104/pp.110.158865
[31] Jung K H, Han M J, Lee D Y, Lee Y S, Schreiber L, Franke R, Faust A, Yephremov A, Saedler H, Kim Y W, Hwang I, An G. Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development. Plant Cell, 2006, 18: 3015-3032.
pmid: 17138699
[32] Luo T, Zou T, Yuan G Q, He Z Y, Li W J, Tao Y, Liu M M, Zhou D, Zhao H F, Zhu J, Liang Y Y, Deng Q M, Wang S Q, Zheng A P, Liu H N, Wang L X, Li P, Li S C. Less and shrunken pollen 1 (LSP1) encodes a member of the ABC transporter family required for pollen wall development in rice (Oryza sativa L.). Crop J, 2020, 8: 492-504.
doi: 10.1016/j.cj.2019.09.001
[33] Wu L, Guan Y S, Wu Z G, Yang K, Lyu J, Converse Richard, Huang Y X, Mao J X, Zhao Y, Wang Z W, Min H Q, Kan D Y, Zhang Y. OsABCG15 encodes a membrane protein that plays an important role in anther cuticle and pollen exine formation in rice. Plant Cell Rep, 2014, 33: 1881-1899.
doi: 10.1007/s00299-014-1666-8
[34] Zhu L, Shi J X, Zhao G C, Zhang D B, Liang W Q. Post-meiotic deficient anther1 (PDA1) encodes an ABC transporter required for the development of anther cuticle and pollen exine in rice. J Plant Biol, 2013, 56: 59-68.
doi: 10.1007/s12374-013-0902-z
[35] Niu B X, He F R, He M, Ren D, Chen L T, Liu Y G. The ATP-binding cassette transporter OsABCG15 is required for anther development and pollen fertility in rice. J Integr Plant Biol, 2013, 55: 710-720.
doi: 10.1111/jipb.12053
[36] Zhao G C, Shi J X, Liang W Q, Xue F Y, Luo Q, Zhu L, Qu G R, Chen M J, Schreiber L, Zhang D B. Two ATP binding cassette G transporters, rice ATP Binding Cassette G26 and ATP Binding Cassette G15, collaboratively regulate rice male reproduction. Plant Physiol, 2015, 169: 2064-2079.
[37] Shi J, Tan H X, Yu X H, Liu Y Y, Liang W Q, Kosala R, Benni F R, Lukas S, Wang Y J, Kai G Y, John S, Ma H, Zhang D B. Defective Pollen Wall is required for anther and microspore development in rice and encodes a fatty acyl carrier protein reductase. Plant Cell, 2011, 23: 2225-2246.
doi: 10.1105/tpc.111.087528
[38] Xu D W, Shi J X, Rautengarten C, Li Y, Qian X L, Uzair M, Zhu L, Luo Q, An G, Waßmann F, Lukas S, Joshua L, Scheller H V, Hu J P, Zhang D B, Liang W Q. Defective Pollen Wall 2 (DPW2) encodes an acyl transferase required for rice pollen development. Plant Physiol, 2017, 173: 240-255.
doi: 10.1104/pp.16.00095
[39] Zhao J, Long T, Wang Y F, Tong X H, Tang J, Li J L, Wang H M, Tang L Q, Li Z Y, Shu Y Z, Liu X X, Li S F, Liu H, Li J L, Wu Y Z, Zhang J. RMS2 encoding a GDSL lipase mediates lipid homeostasis in anthers to determine rice male fertility. Plant Physiol, 2020, 182: 2047-2064.
doi: 10.1104/pp.19.01487
[40] Mondol P C, Xu D W, Lei D, Shi J X, Wang C H, Chen X F, Chen M J, Hu J P, Liang W Q, Zhang D B. DPW3), a novel alpha integrin-like protein, is required for pollen wall formation in rice. New Phytol, 2020, 225: 807-822.
doi: 10.1111/nph.16161
[41] Liu Z, Lin S, Shi J X, Yu J, Zhu L, Yang X J, Zhang D B, Liang W Q. Rice No Pollen 1 (NP1) is required for anther cuticle formation and pollen exine patterning. Plant J, 2017, 91: 263-277.
doi: 10.1111/tpj.13561
[42] Men X, Shi J X, Liang W Q, Zhang Q F, Lian G B, Quan S, Zhu L, Luo Z J, Chen M J, Zhang D B. Glycerol-3-Phosphate Acyltransferase 3 (OsGPAT3) is required for anther development and male fertility in rice.. J Exp Bot, 2017, 68: 513-526.
[43] Sun L P, Xiang X J, Yang Z F, Yu P, Wen X X, Wang H, Abbas A, Muhammad K R, Zhang Y X, Cheng S H, Cao L Y. OsGPAT3 plays a critical role in anther wall programmed cell death and pollen development in rice. Int J Mol Sci, 2018, 19: 4017.
doi: 10.3390/ijms19124017
[44] Yang X J, Liang W Q, Chen M J, Zhang D B, Zhao X X, Shi J X. Rice fatty acyl-CoA synthetase OsACOS12 is required for tapetum programmed cell death and male fertility. Planta, 2017, 246: 105-122.
doi: 10.1007/s00425-017-2691-y
[45] Zhu X L, Yu J, Shi J X, Tohge T, Fernie A R, Meir S, Aharoni A, Xu D W, Zhang D B, Liang W Q. The polyketide synthase OsPKS2 is essential for pollen exine and Ubisch body patterning in rice. J Integr Plant Biol, 2017, 59: 612-628.
doi: 10.1111/jipb.12574
[46] Zou T, Liu M X, Xiao Q, Wang T, Chen D, Luo T, Yuan G Q, Li Q, Zhu J, Liang Y Y, Deng Q M, Wang S Q, Zheng A P, Wang L X, Li P, Li S C. OsPKS2 is required for rice male fertility by participating in pollen wall formation. Plant Cell Rep, 2018, 37: 759-773.
doi: 10.1007/s00299-018-2265-x
[47] 周雨露, 林泓, 张大兵, 王灿华, 余婧. 酮类物质合成酶OsPKS1OsPKS2对水稻花粉外壁形成的作用. 中国农业科学, 2019, 52: 1295-1307.
Zhou Y L, Lin H, Zhang D B, Wang C H, Yu J. The function of the polyketide synthase OsPKS1 and OsPKS2 in regulating pollen wall formation in rice. Agric Sci Chin, 2019, 52: 1295-1307.(in Chinese with English abstract)
[48] 陈代波, 占小登, 吴超, 沈希宏, 吴伟明, 高志强, 程式华, 曹立勇. 一个水稻长护颖突变体的遗传分析和基因定位. 作物学报, 2010, 36: 1506-1511.
doi: 10.3724/SP.J.1006.2010.01506
Chen D B, Zhan X D, Wu C, Shen X H, Wu W M, Gao Z Q, Cheng S H, Cao L Y. Genetic analysis and gene mapping of a long empty glumes mutant in rice (Oryza sativa L.). Acta Agron Sin, 2010, 36: 1506-1511. (in Chinese with English abstract)
[49] 初明光, 李双成, 王世全, 邓其明, 张婧, 丁磊, 文勇, 郑爱萍, 周星宇, 李平. 一个水稻雄性不育突变体的遗传分析和基因定位. 作物学报, 2009, 35: 1151-1155.
Chu M G, Li S C, Wang S Q, Deng Q M, Zhang J, Ding L, Wen Y, Zheng A P, Zhou X Y, Li P. Genetic analysis and molecular mapping of a male sterile mutant in rice. Acta Agron Sin, 2009, 35: 1151-1155.(in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.01151
[50] Wang D F, Wang H, Liu Q E, Tu R R, Zhou X P, Zhang Y X, Wu W X, Yu P, Chen D B, Zhan X D, Cao L Y, Cheng S H, Shen X H. Reduction of OsMPK6 activity by a R89K mutation induces cell death and bacterial blight resistance in rice. Plant Cell Rep, 2021, 40: 835-850.
doi: 10.1007/s00299-021-02679-4
[51] Tu R R, Wang H, Liu Q E, Wang D F, Zhou X P, Xu P, Zhang Y X, Wu W X, Chen D B, Cao L Y, Cheng S H, Shen X H. Characterization and genetic analysis of the oshpl3 rice lesion mimic mutant showing spontaneous cell death and enhanced bacterial blight resistance. Plant Physiol Biochem, 2020, 154: 94-104.
doi: 10.1016/j.plaphy.2020.05.001
[52] 李京琳, 李佳林, 李新鹏, 安保光, 曾翔, 吴永忠, 黄培劲, 龙湍. 水稻ptc1隐性核不育系的创制及其配合力分析. 作物学报, 2021, 47: 2173-2183.
doi: 10.3724/SP.J.1006.2021.02076
Li J L, Li J L, Li X P, An B G, Zeng X, Wu Y Z, Huang P J, Long T. Creation and combining ability analysis of recessive genic sterile lines with a new ptc1 locus in rice. Acta Agron Sin, 2021, 47: 2173-2183.(in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.02076
[53] Chang Z Y, Chen Z F, Wang N, Xie G, Lu J W, Yan W, Zhou J L, Tang X Y, Deng X W, Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene. Proc Natl Acad Sci USA, 2016, 113: 14145-14150.
doi: 10.1073/pnas.1613792113
[54] Song S F, Wang T K, Li Y X, Hu J, Kan R F, Qiu M D, Deng Y D, Liu P X, Zhang L C, Dong H, Li C X, Yu D, Li X Q, Yuan D Y, Yuan L P, Li L. A novel strategy for creating a new system of third eneration hybrid rice technology using a cytoplasmic sterility gene and a genic male: sterile gene. Plant Biotec J, 2021, 19: 251-260.
doi: 10.1111/pbi.13457
[1] ZHU Chun-Quan, WEI Qian-Qian, XIANG Xing-Jia, HU Wen-Jun, XU Qing-Shan, CAO Xiao-Chuang, ZHU Lian-Feng, KONG Ya-Li, LIU Jia, JIN Qian-Yu, ZHANG Jun-Hua. Regulation effects of seedling raising by melatonin and methyl jasmonate substrate on low temperature stress tolerance in rice  [J]. Acta Agronomica Sinica, 2022, 48(8): 2016-2027.
[2] LIU Kun, HUANG Jian, ZHOU Shen-Qi, ZHANG Wei-Yang, ZHANG Hao, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang. Effects of panicle nitrogen fertilizer rates on grain yield in super rice varieties with different panicle sizes and their mechanism [J]. Acta Agronomica Sinica, 2022, 48(8): 2028-2040.
[3] WEI Gang, CHEN Dan-Yang, REN De-Yong, YANG Hong-Xia, WU Jing-Wen, FENG Ping, WANG Nan. Identification and gene mapping of slender stem mutant sr10 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(8): 2125-2133.
[4] ZHOU Chi-Yan, LI Guo-Hui, XU Ke, ZHANG Chen-Hui, YANG Zi-Jun, ZHANG Fen-Fang, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Characteristics of vascular bundle of peduncle and flag leaf and assimilates translocation in leaves and stems of different types of rice varieties [J]. Acta Agronomica Sinica, 2022, 48(8): 2053-2065.
[5] HUANG Fu-Deng, HUANG Yan, JIN Ze-Yan, HE Huan-Huan, LI Chun-Shou, CHENG Fang-Min, PAN Gang. Physiological characters and gene mapping of a precocious leaf senescence mutant ospls7 in rice (Orzo sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(7): 1832-1842.
[6] TAO Yu, YAO Yu, WANG Kun-Ting, XING Zhi-Peng, ZHAI Hai-Tao, FENG Yuan, LIU Qiu-Yuan, HU Ya-Jie, GUO Bao-Wei, WEI Hai-Yan, ZHANG Hong-Cheng. Combined effects of panicle nitrogen fertilizer amount and shading during grain filling period on grain quality of conventional japonica rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1730-1745.
[7] YANG Fei, ZHANG Zheng-Feng, NAN Bo, XIAO Ben-Ze. Genome-wide association analysis and candidate gene selection of yield related traits in rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1813-1821.
[8] YUAN Shen, PENG Shao-Bing. Comparison of grain heavy metal concentration between main and ratoon seasons of ratoon rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1822-1831.
[9] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[10] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[11] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[12] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[13] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[14] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[15] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .