Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (8): 2125-2133.doi: 10.3724/SP.J.1006.2022.12052
• RESEARCH NOTES • Previous Articles
WEI Gang1(), CHEN Dan-Yang1(), REN De-Yong2(), YANG Hong-Xia1, WU Jing-Wen1, FENG Ping1, WANG Nan1,*()
[1] |
Liu X B, Wei X J, Sheng Z H, Jiao G A, Tang S Q, Luo L, Hu P S, Wang T. Polycomb protein OsFIE2 affects plant height and grain yield in rice. PLoS One, 2016, 11: e0164748.
doi: 10.1371/journal.pone.0164748 |
[2] |
Liu J, Shen J, Xu Y, Li X, Xiong L. Ghd2, a CONSTANS-like gene, confers drought sensitivity through regulation of senescence in rice. J Exp Bot, 2016, 67: 5785-5798.
doi: 10.1093/jxb/erw344 |
[3] |
Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2009, 40: 761-767.
doi: 10.1038/ng.143 |
[4] |
Na J K, Huh S M, Yoon I S, Byun M O, Lee Y H, Lee K O, Kim D Y. Rice LIM protein OsPLIM2a is involved in rice seed and tiller development. Mol Breed, 2014, 34: 569-581.
doi: 10.1007/s11032-014-0058-7 |
[5] |
Liao Z, Yu H, Duan J, Yuan K, Li J. SLR1 inhibits MOC1 degradation to coordinate tiller number and plant height in rice. Nat Commun, 2019, 10: 2738.
doi: 10.1038/s41467-019-10667-2 |
[6] |
Wang Y J, Zhao J, Lu W J, Deng D X. Gibberellin in plant height control: old player, new story. Plant Cell Rep, 2017, 36: 391-398.
doi: 10.1007/s00299-017-2104-5 |
[7] |
Wu T, Shen Y, Zheng M, Yang C, Chen Y, Feng Z, Liu X, Liu S, Chen Z, Lei C. Gene SGL, encoding a kinesin-like protein with transactivation activity, is involved in grain length and plant height in rice. Plant Cell Rep, 2014, 33: 235-244.
doi: 10.1007/s00299-013-1524-0 |
[8] |
Jiang L, Guo L, Jiang H, Zeng D, Hu J, Wu L, Liu J, Gao Z, Qian Q. Genetic analysis and fine-mapping of a dwarfing with withered leaf-tip mutant in rice. J Genet Genomics, 2008, 35: 715-721.
doi: 10.1016/S1673-8527(08)60226-X |
[9] |
Piao R, Chu S H, Jiang W, Yu Y, Jin Y, Woo M O, Lee J, Kim S, Koh H J. Isolation and characterization of a dominant dwarf gene, D-h, in rice. PLoS One, 2014, 9: e86210.
doi: 10.1371/journal.pone.0086210 |
[10] |
Wang W, Li G, Zhao J, Chu H, Lin W, Zhang D, Wang Z, Liang W. DWARF TILLER1, a WUSCHEL-related homeobox transcription factor, is required for tiller growth in rice. PLoS Genet, 2014, 10: e1004154.
doi: 10.1371/journal.pgen.1004154 |
[11] | 汤日圣, 梅传生, 张金渝, 蔡小宁, 吴光南. TO3诱导水稻雄性不育与内源激素的关系. 江苏农业学报, 1996, 12(2): 6-10. |
Tang R S, Meng C S, Zhang J Y, Cai X N, Wu G N. Relationship between rice male sterility induction by TO3 and level of endogenous hormones. Jiangsu J Agric, 1996, 12(2): 6-10. (in Chinese with English abstract) | |
[12] |
Ren D, Cui Y, Hu H, Xu Q, Qian Q. AH2 encodes a MYB domain protein that determines hull fate and affects grain yield and quality in rice. Plant J, 2019, 100: 813-824.
doi: 10.1111/tpj.14481 |
[13] |
Zhu M, Chen X L, Zhu X Y, Xing Y D, Zhang T Q. Identification and gene mapping of the starch accumulation and premature leaf senescence mutant ossac4 in rice. J Integr Agric, 2020, 19: 2150-2164.
doi: 10.1016/S2095-3119(19)62814-5 |
[14] |
Wellburn A R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol, 1994, 144: 307-313.
doi: 10.1016/S0176-1617(11)81192-2 |
[15] |
Rogers S, Bendich A. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol, 1985, 5: 69-76.
doi: 10.1007/BF00020088 pmid: 24306565 |
[16] |
Ren D, Rao Y, Huang L, Leng Y, Hu J, Lu M, Zhang G, Zhu L, Gao Z, Dong G. Fine mapping identifies a new QTL for brown rice rate in rice (Oryza sativa L.). Rice, 2016, 9: 4.
doi: 10.1186/s12284-016-0076-7 |
[17] |
Michelmore R, Paran I, Kesseli R. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828-9832.
doi: 10.1073/pnas.88.21.9828 |
[18] |
Xing Y D, Du D, Xiao Y, Zhang T, Chen X, Ping F, Sang X C, Nan W, He G. Fine mapping of a new lesion mimic and Early Senescence 2 (lmes2) mutant in rice. Crop Sci, 2016, 56: 1550-1560.
doi: 10.2135/cropsci2015.09.0541 |
[19] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR. Methods, 2002, 25: 402-408.
doi: 10.1006/meth.2001.1262 |
[20] |
Liu W, Zhang D, Tang M, Li D, Zhu Y, Zhu L, Chen C. THIS 1 is a putative lipase that regulates tillering, plant height, and spikelet fertility in rice. J Exp Bot, 2013, 64: 4389-4402.
doi: 10.1093/jxb/ert256 |
[21] |
Lisa M, Noriyuki K, Rika Y, Junko S, Haruka M, Yumiko M, Masao T, Mizuho S, Shinobu N, Yuzo M. Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res, 2002, 9: 11-17.
doi: 10.1093/dnares/9.1.11 |
[22] | Li S, Gao J, Li J, Wang Y. Advances in regulating rice tillers by strigolactones. Chin Sci Bull, 2015, 50: 539-548. |
[23] |
Ding Z, Lin Z, Li Q, Wu H, Xiang C, Wang J. DNL1, encodes cellulose synthase-like D4, is a major QTL for plant height and leaf width in rice (Oryza sativa L.). Biochem Biophys Res Commun, 2015, 457: 133-140.
doi: 10.1016/j.bbrc.2014.12.034 |
[24] |
Zhang P P, Zhang Y X, Sun L P, Sinumporn S, Yang Z F, Sun B, Xuan D D, Li Z H, Yu P, Wu W X, Wang K J, Cao L Y, Cheng S H. The rice AAA-ATPase OsFIGNL1 is essential for male meiosis. Front Plant Sci, 2017, 8: 1639.
doi: 10.3389/fpls.2017.01639 |
[25] |
Tadashi S, Susumu O, Yuta T, Hikaru S, Makiko K K. Reduction of gibberellin by low temperature disrupts pollen development in rice. Plant Physiol, 2014, 164: 2011-2019.
doi: 10.1104/pp.113.234401 pmid: 24569847 |
[26] |
Wang L, Wang Z, Xu Y, Joo S H, Kang C. OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice. Plant J, 2008, 57: 498-510.
doi: 10.1111/j.1365-313X.2008.03707.x |
[27] |
Kensuke K, Shoko H, Toshiharu K, Koh I. Increased leaf photosynthesis caused by elevated stomatal conductance in a rice mutant deficient in SLAC1, a guard cell anion channel protein. J Exp Bot, 2012, 63: 5635-5644.
doi: 10.1093/jxb/ers216 pmid: 22915747 |
[28] |
Micol J L. Leaf development: time to turn over a new leaf? Curr Opin Plant Biol, 2009, 12: 9-16.
doi: 10.1016/j.pbi.2008.11.001 pmid: 19109050 |
[29] |
Wang Y F, Zhang J H, Shi X L, Peng Y, Li P, Lin D Z, Dong Y J, Teng S. Temperature-sensitive albino gene TCD5, encoding a monooxygenase, affects chloroplast development at low temperatures. J Exp Bot, 2016, 67: 5187-5202.
doi: 10.1093/jxb/erw287 |
[30] |
Zhang Y, Wang X, Luo Y, Zhang L, Li Y. OsABA8ox2, an ABA catabolic gene, suppresses root elongation of rice seedlings and contributes to drought response. Crop J, 2019, 8: 480-491.
doi: 10.1016/j.cj.2019.08.006 |
[31] |
Jain M, Kaur N, Garg R, Thakur J K, Tyagi A K, Khurana J P. Structure and expression analysis of early auxin-responsive Aux/IAA gene family in rice (Oryza sativa L.). Funct Integr Genomics, 2006, 6: 47-59.
doi: 10.1007/s10142-005-0005-0 |
[32] |
Nakamura A, Umemura I, Gomi K, Hasegawa Y, Kitano H, Sazuka T, Matsuoka M. Production and characterization of auxin-insensitive rice by overexpression of a mutagenized rice IAA protein. Plant J, 2010, 46: 297-306.
doi: 10.1111/j.1365-313X.2006.02693.x |
[33] |
Ni J, Wang G, Zhu Z, Zhang H, Wu Y, Ping W. OsIAA23- mediated auxin signaling defines postembryonic maintenance of QC in rice. Plant J Cell Mol Biol, 2011, 68: 433-442.
doi: 10.1111/j.1365-313X.2011.04698.x |
[34] | Kant S, Bi Y M, Tong Z. SAUR39, a Small Auxin-Up RNA Gene, acts as a negative regulator of auxin synthesis and transport in rice. Plant Signal Behav, 2009, 151: 691-701. |
[35] |
Zhang Q, Li J, Zhang W, Yan S, Wang R, Zhao J, Li Y, Qi Z, Sun Z, Zhu Z. The putative auxin efflux carrier OsPIN3t is involved in the drought stress response and drought tolerance. Plant J, 2012, 72: 805-816.
doi: 10.1111/j.1365-313X.2012.05121.x |
[36] |
Zhang L, Feng P, Deng Y, Yin W, Wang N. Decreased Vascular Bundle 1 affects mitochondrial and plant development in rice. Rice, 2021, 14: 13.
doi: 10.1186/s12284-021-00454-3 |
[37] |
Jing H, Yang X, Zhang J, Liu X, Zheng H, Dong G, Nian J, Feng J, Xia B, Qian Q. Peptidyl-prolyl isomerization targets rice Aux/IAAs for proteasomal degradation during auxin signalling. Nat Commun, 2015, 6: 7395.
doi: 10.1038/ncomms8395 |
[38] |
Jin L, Qin Q, Wang Y, Pu Y, Liu L, Wen X, Ji S, Wu J, Wei C, Ding B. Rice dwarf virus P2 protein hijacks auxin signaling by directly targeting the rice OsIAA10 protein, enhancing viral infection and disease development. PLoS Pathog, 2016, 12: e1005847.
doi: 10.1371/journal.ppat.1005847 |
[39] |
Bian H, Xie Y, Guo F, Ning H, Zhu M. Distinctive expression patterns and roles of the miRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice. New Phytol, 2012, 196: 149-161.
doi: 10.1111/j.1469-8137.2012.04248.x |
[40] |
Xia K F, Wang R, Ou X J, Fang Z M, Tian C G, Duan J, Wang Y Q, Zhang M Y. OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS One, 2012, 7: e30039.
doi: 10.1371/journal.pone.0030039 |
[41] |
Li X, Xia K, Liang Z, Chen K, Gao C, Zhang M. MicroRNA 393 is involved in nitrogen-promoted rice tillering through regulation of auxin signal transduction in axillary buds. Sci Rep, 2016, 6: 32158.
doi: 10.1038/srep32158 |
[42] |
Lo S F, Yang S Y, Chen K T, Hsing Y I, Zeevaart J, Chen L J, Yu S M. A novel class of Gibberellin 2-Oxidases control semidwarfism, tillering, and root development in rice. Plant Cell, 2008, 20: 2603-2618.
doi: 10.1105/tpc.108.060913 |
[43] |
Sakamoto T. Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiol, 2001, 125: 1508-1516.
pmid: 11244129 |
[44] |
Itoh H, Ueguchi-Tanaka M, Sentoku N, Kitano H, Matsuoka M, Kobayashi M. Cloning and functional analysis of two gibberellin 3β-hydroxylase genes that are differently expressed during the growth of rice. Proc Natl Acad Sci USA, 2001, 98: 8909-8914.
doi: 10.1073/pnas.141239398 |
[45] |
Takeshi K, Keisuke N, Rico G, Diane R W, Tomoyuki F, Masanari N, Takuya K, Keita A, Anzu M, Yoshinao M, Kiyoshi M, Yoshiya S, Shinjiro Y, Mikiko K, Hitoshi S, Wu J Z, Kaworu E, Nobutaka M, Masaru O T, Shuichi Y, Masanori Y, Ryusuke Y, Kazuhiko N, Toshihiro M, Gen T, Susan R M, Ashikari M. Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Science, 2018, 361: 181-186.
doi: 10.1126/science.aat1577 pmid: 30002253 |
[46] |
Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi C. The OsTB1 gene negatively regulates lateral branching in rice. Plant J, 2010, 33: 513-520.
doi: 10.1046/j.1365-313X.2003.01648.x |
[47] |
Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Yamaguchi M J. Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/ D8. Plant Cell, 2001, 13: 999-1010.
pmid: 11340177 |
[48] |
Akira I, Yutaka S, Paolo V, Pierdomenico P, Hirohiko H. The slender rice mutant, with constitutively activated gibberellin signal transduction, has enhanced capacity for abscisic acid level. Plant Cell Physiol, 2002, 43: 974-979.
pmid: 12354914 |
[1] | ZHANG Zhen-Bo, QU Xin-Yue, YU Ning-Ning, REN Bai-Zhao, LIU Peng, ZHAO Bin, ZHANG Ji-Wang. Effects of nitrogen application rate on grain filling characteristics and endogenous hormones in summer maize [J]. Acta Agronomica Sinica, 2022, 48(9): 2366-2376. |
[2] | DU Qi-Di, GUO Hui-Jun, XIONG Hong-Chun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, SONG Xi-Yun, LIU Lu-Xiang. Gene mapping of apical spikelet degeneration mutant asd1 in wheat [J]. Acta Agronomica Sinica, 2022, 48(8): 1905-1913. |
[3] | CHEN Chi, CHEN Dai-Bo, SUN Zhi-Hao, PENG Ze-Qun, Adil Abbas, HE Deng-Mei, ZHANG Ying-Xin, CHENG Hai-Tao, YU Ping, MA Zhao-Hui, SONG Jian, CAO Li-Yong, CHENG Shi-Hua, SUN Lian-Ping, ZHAN Xiao-Deng, LYU Wen-Yan. Characterization and genetic mapping of a classic-abortive-type recessive genic-male-sterile mutant ap90 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(7): 1569-1582. |
[4] | HUANG Fu-Deng, HUANG Yan, JIN Ze-Yan, HE Huan-Huan, LI Chun-Shou, CHENG Fang-Min, PAN Gang. Physiological characters and gene mapping of a precocious leaf senescence mutant ospls7 in rice (Orzo sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(7): 1832-1842. |
[5] | TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388. |
[6] | ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400. |
[7] | HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. |
[8] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[9] | WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261. |
[10] | LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895. |
[11] | XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579. |
[12] | FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589. |
[13] | WANG Yan, CHEN Zhi-Xiong, JIANG Da-Gang, ZHANG Can-Kui, ZHA Man-Rong. Effects of enhancing leaf nitrogen output on tiller growth and carbon metabolism in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 739-746. |
[14] | ZHENG Xiang-Hua, YE Jun-Hua, CHENG Chao-Ping, WEI Xing-Hua, YE Xin-Fu, YANG Yao-Long. Xian-geng identification by SNP markers in Oryza sativa L. [J]. Acta Agronomica Sinica, 2022, 48(2): 342-352. |
[15] | WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653. |
|