Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (9): 2325-2338.doi: 10.3724/SP.J.1006.2022.12043

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of exogenous molybdenum on yield formation and nitrogen utilization in rice

CHEN Zhi-Qing(), FENG Yuan, WANG Rui, CUI Pei-Yuan, LU Hao, WEI Hai-Yan, ZHANG Hai-Peng*(), ZHANG Hong-Cheng   

  1. Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture and Rural Affaris / Jiangsu Key Laboratory of Crop Cultivation and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2021-06-21 Accepted:2021-11-29 Online:2022-09-12 Published:2021-12-15
  • Contact: ZHANG Hai-Peng E-mail:MX120190550@163.com;hpzhang@yzu.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2016YFD0300503);National Natural Science Foundation of China(31901447);National Natural Science Foundation of China(41701329);China Agriculture Research System(CARS-01-27);Innovation and Entrepreneurship Program of Jiangsu Province(JSSCBS20211062)

Abstract:

To explore the effects of nano-molybdenum (Nano-Mo) and ionic-molybdenum (Ionic-Mo) on rice yield formation and nitrogen utilization, pot experiments were conducted at nitrogen fertilizer application level of 0, 180, 225, 270, and 315 kg N hm-2 using Nanjing 9108 as the test object. Rice yield, yield composition, dry matter accumulation, nitrogen accumulation, and utilization were analyzed. Results showed that the application of Nano-Mo and Ionic-Mo could effectively increase rice yield compared with non-molybdenum treatments. Rice yields of Nano-Mo treatments were significantly higher than those of Ionic-Mo treatments at the same N application level. Moreover, the same trend was also observed in LAI and the accumulation of dry matter in the late stage of rice growth. The application of Nano-Mo could improve the dry matter formation in the late stage of rice growth by increasing the SPAD value, photosynthetic potential, and net photosynthetic rate of the flag leaf after heading. Nano-Mo application promoted the synthesis of dry matter and the accumulation in the grain in the late stage of rice growth, and ultimately increased rice yield. In the same level of nitrogen fertilizer application, compared with non-molybdenum treatments Nano-Mo and Ionic-Mo application both increased the nitrogen concentration and nitrogen accumulation in rice stalks, leaves and grains, and promoted the partial productivity of nitrogen fertilizer, nitrogen agronomic utilization rate, nitrogen physiological utilization rate, and nitrogen absorption and utilization.

Key words: rice, nano-molybdenum, dry matter accumulation, yield composition, nitrogen utilization

Table 1

Effects of exogenous molybdenum on rice yield and yield components"

钼肥处理
Mo fertilizer
treatment
氮肥用量
N application
rate
单位面积穗数
Panicle number
(×104 hm-2)
每穗粒数
Spikelet per
panicle
结实率
Seed-setting rate
(%)
千粒重
1000-grain weight
(g)
2019产量
Grain yield
(t hm-2)
2020产量
Grain yield
(t hm-2)
Non-Mo 0N 266.8 d 106.0 e 91.1 a 26.84 bc 6.27 e 5.83 d
12N 357.2 c 115.1 d 90.8 a 26.67 c 9.64 d 9.44 c
15N 368.8 bc 122.5 c 91.2 a 26.88 bc 9.65 d 9.46 c
18N 376.4 b 128.1 bc 91.5 a 26.97 bc 9.93 d 9.64 c
21N 385.0 ab 131.9 b 91.6 a 27.14 b 10.67 bc 10.35 b
平均 Mean 350.8 120.7 91.2 26.90 9.23 8.94
Ionic-Mo 0N 267.6 d 109.2 de 91.2 a 26.93 bc 6.32 e 5.99 d
12N 366.2 bc 118.5 cd 91.5 a 27.26 b 10.10 d 9.75 c
15N 375.0 bc 125.9 bc 91.8 a 27.45 ab 10.32 cd 9.98 bc
18N 383.2 ab 132.1 b 92.1 a 27.49 ab 10.59 c 10.35 b
21N 389.6 ab 137.3 a 92.3 a 27.60 ab 11.08 b 10.71 ab
平均 Mean 356.3 124.6 91.8 27.35 9.68 9.36
Nano-Mo 0N 272.4 d 112.0 de 91.4 a 27.02 bc 6.42 e 6.02 d
12N 371.4 bc 128.4 bc 91.5 a 27.29 b 10.21 cd 9.80 c
15N 378.6 b 130.2 b 91.9 a 27.50 ab 10.38 cd 10.10 bc
18N 387.4 ab 137.1 a 92.4 a 27.69 ab 10.74 bc 10.40 b
21N 398.0 a 140.5 a 92.7 a 27.83 a 11.69 a 11.23 a
平均 Mean 361.6 129.6 92.0 27.47 9.89 9.51
钼肥处理 Mo * ** ns ns ** **
氮肥用量 N ** ** ns ns ** **
钼肥×氮肥 Mo×N ns ns ns ns ns ns

Fig. 1

Effects of exogenous molybdenum on rice tiller dynamics Treatments and abbreviations are the same as those given in Table 1."

Fig. 2

Effects of exogenous molybdenum on percentage of productive tillers in rice Treatments and abbreviations are the same as those given in Table 1."

Table 2

Effects of exogenous molybdenum on rice dry matter accumulation at different growth stages"

钼肥处理
Mo fertilizer
treatment
氮肥用量
N application
rate
移栽-拔节TS-JS 拔节-抽穗JS-HS 抽穗-成熟HS-MS
积累量
Accumulation
(t hm-2)
比例
Ratio
(%)
积累量
Accumulation
(t hm-2)
比例
Ratio
(%)
积累量
Accumulation
(t hm-2)
比例
Ratio
(%)
Non-Mo 0N 3.83 f 28.54 ab 5.33 d 39.68 a 4.27 f 31.77 g
12N 5.86 c 27.36 b 8.50 c 39.73 a 7.04 e 32.91 f
15N 5.72 d 26.42 bc 8.54 c 39.46 a 7.38 de 34.12 e
18N 5.74 d 25.92 c 8.66 c 39.10 b 7.74 d 34.98 d
21N 6.13 ab 26.12 bc 9.18 b 39.11 b 8.16 c 34.76 d
平均 Mean 5.45 26.87 8.04 39.42 6.92 33.71
Ionic-Mo 0N 3.95 e 28.88 a 5.33 d 39.03 bc 4.39 f 32.09 g
12N 5.89 c 26.73 bc 8.69 c 39.44 a 7.46 d 33.83 e
15N 5.70 d 25.50 cd 8.72 c 38.96 bc 7.95 cd 35.54 c
18N 5.85 c 25.11 cd 8.86 bc 38.07 de 8.57 bc 36.82 b
21N 6.07 b 24.85 cd 9.47 ab 38.80 c 8.88 b 36.35 b
平均 Mean 5.49 26.19 8.22 38.82 7.47 34.98
Nano-Mo 0N 3.84 f 27.78 ab 5.49 d 39.67 a 4.50 f 32.54 fg
12N 6.04 b 27.27 b 8.65 c 39.08 bc 7.45 d 33.65 e
15N 5.73 d 25.26 cd 8.68 c 38.29 d 8.26 c 36.45 b
18N 5.81 cd 24.49 d 8.97 bc 37.81 e 8.95 b 37.70 a
21N 6.20 a 24.45 d 9.69 a 38.17 d 9.48 a 37.37 a
平均 Mean 5.52 25.85 8.30 38.60 7.73 35.54
钼肥处理 Mo ns ** * ns ** **
氮肥用量 N ** ** ** ns ** **
钼肥×氮肥 Mo×N ns ns ns ns ** ns

Table 3

Effects of exogenous molybdenum on leaf area index in rice"

钼肥处理
Mo fertilizer
treatment
氮肥用量
N application
rate
拔节期
Jointing
抽穗期
Heading
成熟期
Maturity
叶面积衰减速率
Decreasing rate of leaf area (LAI d-1)
Non-Mo 0N 2.81 d 4.97 d 2.03 f 0.0588 d
12N 4.17 c 7.05 c 3.20 d 0.0770 bc
15N 4.21 c 7.16 bc 3.20 d 0.0791 bc
18N 4.46 b 7.43 bc 3.28 d 0.0830 ab
21N 4.66 ab 7.77 ab 3.52 c 0.0849 a
平均 Mean 4.06 6.89 3.05 0.0770
Ionic-Mo 0N 2.85 d 5.05 d 2.30 e 0.0549 e
12N 4.21 c 7.13 c 3.43 cd 0.0741 c
15N 4.23 c 7.30 bc 3.50 c 0.0760 c
18N 4.55 ab 7.44 bc 3.61 bc 0.0766 c
21N 4.68 a 7.95 a 3.75 b 0.0840 ab
平均 Mean 4.10 6.98 3.32 0.0731
Nano-Mo 0N 2.85 d 5.00 d 2.29 e 0.0543 e
12N 4.15 c 7.20 bc 3.46 c 0.0748 c
15N 4.35 bc 7.27 bc 3.53 c 0.0747 c
18N 4.50 ab 7.51 b 3.74 b 0.0753 c
21N 4.66 ab 7.97 a 3.94 a 0.0806 b
平均 Mean 4.10 6.99 3.39 0.0719
钼肥处理 Mo ns ns ** **
氮肥用量 N ** ** ** **
钼肥×氮肥 Mo×N ns ns ns ns

Table 4

Effects of exogenous molybdenum on photosynthetic potential in rice"

钼肥处理
Mo fertilizer
treatment
氮肥用量
N application
rate
移栽-拔节
TS-JS
拔节-抽穗
JS-HS
抽穗-成熟
HS-MS
Non-Mo 0N 91.28 d 136.08 d 174.85 f
12N 135.48 c 196.32 c 256.19 d
15N 136.83 c 198.96 c 259.05 d
18N 144.95 b 208.08 bc 267.75 c
21N 151.52 ab 217.53 ab 282.31 b
平均 Mean 132.01 191.39 248.03
Ionic-Mo 0N 92.74 d 138.26 d 183.76 e
12N 136.76 c 198.48 c 264.01 cd
15N 137.59 c 201.90 bc 270.20 c
18N 147.76 ab 209.76 b 276.29 bc
21N 152.16 a 221.11 a 292.65 a
平均 Mean 133.40 193.90 257.38
Nano-Mo 0N 92.71 d 137.41 d 182.14 e
12N 134.99 c 198.62 c 266.30 c
15N 141.35 bc 203.29 bc 270.00 c
18N 146.10 ab 210.09 b 281.31 b
21N 151.35 ab 220.98 a 297.84 a
平均 Mean 133.30 194.08 259.52
钼肥处理 Mo ns ns **
氮肥用量 N ** ** **
钼肥×氮肥 Mo×N ns ns ns

Table 5

Effects of exogenous molybdenum on SPAD value and net photosynthetic rate in rice"

钼肥处理
Mo fertilizer
treatment
氮肥用量
N application
rate
SPAD值
SPAD value
净光合速率
Net photosynthetic rate (μmol m-2 s-1)
齐穗后5 d
5 days after full heading
齐穗后25 d
25 days after full heading
衰减率
Attenuation rate (%)
齐穗后5 d
5 days after full heading
齐穗后25 d
25 days after full heading
衰减率
Attenuation rate (%)
Non-Mo 0N 37.61 c 28.70 e 31.05 a 17.85 d 11.70 e 52.56 a
12N 41.79 b 32.41 c 28.94 bc 19.21 cd 12.92 cd 48.75 b
15N 42.56 b 33.18 bc 28.27 bc 19.81 c 13.37 c 48.19 bc
18N 43.19 ab 33.90 bc 27.40 cd 20.30 bc 13.73 bc 47.85 bc
21N 43.91 ab 34.78 ab 26.25 d 20.89 b 14.19 b 47.16 bc
平均 Mean 41.81 32.59 28.38 19.61 13.18 48.90
Ionic-Mo 0N 38.76 c 29.86 de 29.81 ab 18.69 d 12.31 de 51.80 a
12N 42.90 ab 33.52 bc 27.98 bc 19.84 c 13.38 c 48.23 bc
15N 43.31 ab 34.11 b 26.97 cd 20.31 bc 13.77 bc 47.48 bc
18N 44.10 ab 34.93 ab 26.25 d 20.64 bc 14.08 bc 46.66 bc
21N 44.38 ab 35.34 ab 25.58 d 21.44 ab 14.69 ab 45.94 c
平均 Mean 42.69 33.55 27.32 20.18 13.65 48.02
Nano-Mo 0N 39.37 c 30.49 d 29.12 b 19.07 cd 12.65 d 50.74 ab
12N 43.68 ab 34.21 b 27.68 c 19.85 c 13.40 c 48.20 bc
15N 44.03 ab 34.81 ab 26.49 cd 20.67 bc 14.02 bc 47.41 bc
18N 44.45 ab 35.25 ab 26.10 d 21.39 ab 14.66 ab 45.90 c
21N 44.96 a 35.94 a 25.10 d 22.17 a 15.27 a 45.21 c
平均 Mean 43.30 34.14 26.90 20.63 14.00 47.49
钼肥处理 Mo * ** ** ** ** *
氮肥用量 N ** ** ** ** ** **
钼肥×氮肥 Mo×N ns ns ns ns ns ns

Table 6

Effects of exogenous molybdenum on nitrogen accumulation in rice"

钼肥处理
Mo fertilizer
treatment
氮肥用量
N application
rate
氮浓度N concentration (mg g-1) 氮积累量N accumulation (kg hm-2)

Stem

Leaf
籽粒
Grain

Stem

Leaf
籽粒
Grain
总株
Total
Non-Mo 0N 3.1 f 7.3 d 8.7 d 14.4 h 11.5 g 66.0 f 91.8 g
12N 3.5 de 7.9 cd 9.7 c 21.4 g 20.2 f 118.9 e 160.5 f
15N 3.9 cd 8.3 c 10.3 b 25.8 ef 23.4 e 134.1 cd 183.4 d
18N 4.4 b 8.8 b 10.7 ab 30.7 c 30.0 bc 144.7 bc 205.4 bc
21N 4.8 a 9.0 b 10.7 ab 33.8 b 29.4 c 146.3 bc 209.5 b
平均 Mean 3.9 8.3 10.0 25.2 22.9 122.0 170.1
Ionic-Mo 0N 3.2 e 7.5 d 9.1 d 15.0 h 12.4 g 70.1 f 97.4 g
12N 3.8 cd 8.1 c 9.9 bc 24.7 f 21.1 f 123.6 de 169.3 ef
15N 4.2 b 8.7 bc 10.4 b 28.5 d 25.4 d 140.1 c 194.0 c
18N 4.7 a 9.3 ab 10.9 ab 33.2 b 30.7 b 150.1 b 213.9 b
21N 4.9 a 9.4 ab 10.8 ab 36.0 a 32.1 a 152.3 ab 220.4 ab
平均 Mean 4.2 8.6 10.2 27.5 24.3 127.2 179.0
Nano-Mo 0N 3.3 e 7.5 d 9.2 d 15.6 h 12.3 g 72.1 f 100.1 g
12N 3.7 d 8.0 c 10.2 bc 23.9 f 20.8 f 129.2 d 173.9 e
15N 4.0 c 8.8 b 10.7 ab 26.2 e 25.0 d 148.3 b 199.5 c
18N 4.7 a 9.7 a 11.1 a 34.1 b 30.7 b 157.0 a 221.8 ab
21N 4.8 a 9.6 a 10.8 ab 35.7 a 33.0 a 157.8 a 226.5 a
平均 Mean 4.1 8.7 10.4 27.1 24.3 132.9 184.3
钼肥处理 Mo ** ** * ** ** ** **
氮肥用量 N ** ** ** ** ** ** **
钼肥×氮肥 Mo×N ns ns ns * * ns ns

Table 7

Effects of exogenous molybdenum on nitrogen translocations in stems-sheaths and leaves from the heading to maturity in rice"

钼肥处理
Mo fertilizer
treatment
氮肥用量
N application
rate
茎鞘 Stem-sheath 叶片 Leaf 穗部氮增加量
N increased
in panicle
(kg hm-2)
氮转运贡献率
Contribution
rate of N
translocation
(%)
氮转运量
N translocation
(kg hm-2)
氮转运率
Efficiency of N translocation
(%)
氮转运量
N translocation
(kg hm-2)
氮转运率
Efficiency of
N translocation
(%)
Non-Mo 0N 18.7 e 56.57 a 30.1 d 72.42 a 51.1 f 95.47 a
12N 24.8 d 53.65 b 40.0 c 66.42 b 96.3 e 67.23 c
15N 24.3 d 48.52 cd 40.8 c 63.56 bc 106.3 d 61.28 de
18N 26.2 c 46.03 d 43.2 ab 59.02 cd 112.9 c 61.50 de
21N 28.2 a 45.49 de 43.5 a 59.70 cd 113.4 bc 63.25 d
平均 Mean 24.5 50.05 39.5 64.22 96.0 69.75
Ionic-Mo 0N 19.1 e 55.99 ab 30.7 d 71.27 a 53.5 f 93.08 ab
12N 24.1 d 49.39 c 39.8 c 65.34 b 100.2 e 63.74 d
15N 24.9 d 46.64 d 41.3 bc 61.91 c 111.2 cd 59.54 e
18N 26.5 bc 44.45 de 43.1 ab 58.44 d 118.3 b 58.88 ef
21N 27.7 ab 43.46 e 43.9 a 57.78 d 118.3 b 60.49 de
平均 Mean 24.5 47.99 39.8 62.95 100.3 67.15
Nano-Mo 0N 19.5 e 55.43 ab 30.6 d 71.28 a 54.8 f 91.28 b
12N 23.6 d 49.68 c 39.6 c 65.58 b 103.2 de 61.19 de
15N 23.6 d 47.40 cd 41.0 c 62.09 c 116.3 bc 55.54 f
18N 26.1 c 43.40 e 43.2 ab 58.49 d 124.8 a 55.59 f
21N 26.6 bc 42.70 e 45.0 a 57.74 d 121.6 ab 58.92 ef
平均 Mean 23.9 47.72 39.9 63.04 104.1 64.50
钼肥处理 Mo ns ** ns ns ** **
氮肥用量 N ** ** ** ** ** **
钼肥×氮肥 Mo×N ns ns ns ns ns ns

Table 8

Effects of exogenous molybdenum on nitrogen utilization in rice"

钼肥处理
Mo fertilizer
treatment
氮肥用量
N application
rate
氮肥偏生产力
PFP
(kg kg-1)
氮素籽粒生产效率
NUEG
(kg kg-1)
氮素农学利用率
AE
(kg kg-1)
氮素生理利用率
PNUE
(kg kg-1)
氮素吸收利用率
NRE
(%)
Non-Mo 12N 53.00 b 59.44 a 19.41 b 50.88 a 38.16 d
15N 42.46 d 52.10 b 15.59 e 38.32 c 40.68 c
18N 36.24 f 47.63 c 13.85 f 32.91 e 42.08 bc
21N 33.37 g 50.18 bc 14.18 f 37.96 c 37.36 d
平均 Mean 41.27 52.34 15.76 40.02 39.57
Ionic-Mo 12N 55.13 ab 58.61 a 20.95 a 52.45 a 39.94 cd
15N 45.13 c 52.35 b 17.78 c 41.45 b 42.90 b
18N 38.79 e 48.97 c 16.00 de 37.10 cd 43.13 ab
21N 34.59 fg 49.44 c 15.06 e 38.58 c 39.04 cd
平均 Mean 43.41 52.34 17.45 42.39 41.25
Nano-Mo 12N 55.61 a 57.57 a 21.03 a 51.32 a 40.98 bc
15N 45.51 c 51.33 bc 17.85 c 40.41 bc 44.17 ab
18N 39.14 e 47.65 c 16.09 de 35.70 d 45.07 a
21N 36.39 f 50.61 bc 16.63 d 41.45 b 40.12 cd
平均 Mean 44.16 51.79 17.90 42.22 42.59
钼肥处理 Mo ** ns ** ** **
氮肥用量 N ** ** ** ** **
钼肥×氮肥 Mo×N ns ns ns * ns
[1] 朱德峰, 张玉屏, 陈惠哲, 向镜, 张义凯. 中国水稻高产栽培技术创新与实践. 中国农业科学, 2015, 48: 3404-3414.
Zhu D F, Zhang Y P, Chen H Z, Xiang J, Zhang Y K. Innovation and practice of high-yield rice cultivation technology in China. Sci Agric Sin, 2015, 48: 3404-3414 (in Chinese with English abstract).
[2] 王玉雯, 郭九信, 孔亚丽, 张瑞卿, 宋立新, 刘振刚, 张俊, 王建中, 郭世伟. 氮肥优化管理协同实现水稻高产和氮肥高效. 植物营养与肥料学报, 2016, 22: 1157-1166.
Wang Y W, Guo J X, Kong Y L, Zhang R Q, Song L X, Liu Z G, Zhang J, Wang J Z, Guo S W. Nitrogen optimize management achieves high grain yield and enhances nitrogen use efficiency of rice. Plant Nutr Fert Sci, 2016, 22: 1157-1166. (in Chinese with English abstract)
[3] 李荣刚, 崔玉亭, 程序. 苏南太湖地区水稻氮肥施用与环境可持续发展. 耕作与栽培, 1999, 19(4): 49-50.
Li R G, Cui Y T, Cheng X. Rice nitrogen fertilizer application and environmental sustainable development in Taihu Lake region. Till & Cult, 1999, 19(4): 49-50. (in Chinese)
[4] 周雯雯, 贾浩然, 张月, 李卫, 李保同, 汤丽梅. 不同类型新型肥料对双季稻产量、氮肥利用率和经济效益的影响. 植物营养与肥料学报, 2020, 26: 657-668.
Zhou W W, Jia H R, Zhang Y, Li W, Li B T, Tang L M. Effects of different new types of fertilizer on yield, nitrogen use efficiency and economic benefit of double cropping rice. Plant Nutr Fert Sci, 2020, 26: 657-668. (in Chinese with English abstract)
[5] 解文孝, 李建国, 刘军, 吕军, 梁传斌, 潘争艳, 李蒙杉, 史鸿儒. 不同土壤背景下秸秆还田量对水稻产量构成及氮吸收利用的影响. 中国土壤与肥料, 2021, 53: 248-255.
Xie W X, Li J G, Liu J, Lyu J, Liang C B, Pan Z Y, Li M S, Shi H R. Effects of straw returning amounts on rice yield components and N uptake of different soil background. China Soils Fert, 2021, 53: 248-255. (in Chinese with English abstract)
[6] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45: 915-924.
Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, Chen X P, Jiang R F. Nutrients efficiencies of major cereal crops in China and measures for improvement. Acta Pedol Sin, 2008, 45: 915-924. (in Chinese with English abstract)
[7] 马源, 王巍, 王景峰. 水稻生产中硅肥和锌肥的作用及施用方法. 现代化农业, 2016, (7): 16-17.
Ma Y, Wang W, Wang J F. The function and application method of silicon fertilizer and zinc fertilizer in rice production. Mod Agric, 2016, (7): 16-17. (in Chinese)
[8] 蔡祖聪, 钦绳武. 作物N、P、K含量对于平衡施肥的诊断意义. 植物营养与肥料学报, 2006, 12: 473-478.
Cai Z C, Qin S W. Diagnosis of balanced fertilization by N, P, K contents in grain and straw of wheat and maize. Plant Nutr Fert Sci, 2006, 12: 473-478. (in Chinese with English abstract)
[9] 杨志珍, 黄河. 施用微量元素肥料对水稻产量与品质的影响. 湖南农业科学, 2003, (1): 34-35.
Yang Z Z, Huang H. Effect of application of trace element fertilizers on rice yield and quality. Hunan Agric Sci, 2003, (1): 34-35. (in Chinese)
[10] 秦玉楠. 钼肥及其在农业上的增产效果. 中国钼业, 1993, (5): 26-29.
Qin Y N. Molybdenum fertilizer and its effect on increasing production in agriculture. Chin Mo Ind, 1993, (5): 26-29. (in Chinese)
[11] Bortels H. Molybdenum as catalyzer in biological nitrogen- fixation. Arch Mikrobiol, 1930, 1: 333-342.
doi: 10.1007/BF00510471
[12] Li Y D, Jin Q, Yang D S, Cui J H. Molybdenum sulfide induce growth enhancement effect of rice (Oryza sativa L.) through regulating the synthesis of chlorophyll and the expression of aquaporin gene. J Agric Food Chem, 2018, 66: 4013-4021.
doi: 10.1021/acs.jafc.7b05940
[13] 杜应琼, 王运华, 王治荣, 魏文学. 两种氮水平下施钼对小麦产量和生长发育的影响. 华中农业大学学报, 1994, 13: 378-383.
Du Y Q, Wang Y H, Wang Z R, Wei W X. Effects of Molybdenum application on wheat yield and growth under two nitrogen levels. J Huazhong Agric Univ, 1994, 13: 378-383 (in Chinese with English).
[14] Alam F, Kim T Y, Kim S Y. Effect of molybdenum on nodulation, plant yield and nitrogen uptake in hairy vetch (Vicia villosa Roth). Soil Sci Plant Nutr, 2015, 61: 664-675.
doi: 10.1080/00380768.2015.1030690
[15] 门中华, 李生秀. 钼对冬小麦硝态氮代谢的影响. 植物营养与肥料学报, 2005, 11: 205-210.
Men Z H, Li S X. Effect of molybdenum on nitrate nitrogen metabolism of winter wheat. Plant Nutr Fert Sci, 2005, 11: 205-210. (in Chinese with English abstract)
[16] 陶龙兴, 谈惠娟, 王熹, 曹立勇, 宋建, 程式华. 高温胁迫对国稻6号开花结实习性的影响. 作物学报, 2008, 34: 669-674.
doi: 10.3724/SP.J.1006.2008.00669
Tao L X, Tan H J, Wang X, Cao L Y, Song J, Cheng S H. Effects of high temperature stress on flowering and grain-setting characteristics for Guodao 6. Acta Agron Sin, 2008, 34: 669-674. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2008.00669
[17] 胡雅杰, 钱海军, 曹伟伟, 邢志鹏, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 机插方式和密度对不同穗型水稻品种产量及其构成的影响. 中国水稻科学, 2016, 30: 493-506.
doi: 10.16819/j.1001-7216.2016.6015
Hu Y J, Qian H J, Cao W W, Xing Z P, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W. Effect of different mechanical transplantation methods and density on yield and its components of different panicle-typed rice. Chin J Rice Sci, 2016, 30: 493-506. (in Chinese with English abstract)
[18] 黄丽芬, 全晓艳, 张蓉, 袁毅, 赵伟, 姜玲玲, 施金琦, 庄恒扬. 光氮及其互作对水稻干物质积累与分配的影响. 中国水稻科学, 2014, 28: 167-176.
Huang L F, Quan X Y, Zhang R, Yuan Y, Zhao W, Jiang L L, Shi J Q, Zhuang H Y. Interactive effects of light intensity and nitrogen supply on dry matter production and distribution of rice. Chin J Rice Sci, 2014, 28: 167-176. (in Chinese with English abstract)
[19] 邓飞, 王丽, 刘利, 刘代银, 任万军, 杨文钰. 不同生态条件下栽培方式对水稻干物质生产和产量的影响. 作物学报, 2012, 38: 1930-1942.
doi: 10.3724/SP.J.1006.2012.01930
Deng F, Wang L, Liu L, Liu D Y, Ren W J, Yang W Y. Effects of cultivation methods on dry matter production and yield of rice under different ecological conditions. Acta Agron Sin, 2012, 38: 1930-1942. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2012.01930
[20] 杨林生, 张宇亭, 杨柳青, 谢军, 杨敏, 张跃强, 石孝均. 不同氮钾水平对水稻干物质累积、转运及产量的影响. 中国土壤与肥料, 2019, 51(4): 89-95.
Yang L S, Zhang Y T, Yang L Q, Xie J, Yang M, Zhang Y Q, Shi X J. Effects of different nitrogen and potassium levels on dry matter accumulation, transport and yield of rice. China Soil Fert, 2019, 51(4): 89-95. (in Chinese with English abstract)
[21] 杨惠杰, 李义珍, 杨仁崔, 姜照伟, 郑景生. 超高产水稻的干物质生产特性研究. 中国水稻科学, 2001, 15: 265-270.
Yang H J, Li Y Z, Yang R C, Jiang Z W, Zheng J S. Dry matter production characteristics of Super high yielding rice. Chin J Rice Sci, 2001, 15: 265-270. (in Chinese with English abstract)
[22] 马均, 朱庆森, 马文波, 田彦华, 杨建昌, 周开达. 重穗型水稻光合作用、物质积累与运转的研究. 中国农业科学, 2003, 36: 375-381.
Ma J, Zhu Q S, Ma W B, Tian Y H, Yang J C, Zhou K D. Studies on the photosynthetic characteristics and accumulation and transformation of assimilation product in heavy panicle type of rice. Sci Agric Sin, 2003, 36: 375-381. (in Chinese with English abstract)
[23] 敖和军, 王淑红, 邹应斌, 彭少兵, 唐启源, 方远祥, 肖安民, 陈玉梅, 熊昌明. 超级杂交稻干物质生产特点与产量稳定性研究. 中国农业科学, 2008, 41: 1927-1936.
Ao H J, Wang S H, Zou Y B, Peng S B, Tang Q Y, Fang Y X, Xiao A M, Chen Y M, Xiong C M. Study on yield stability and dry matter characteristics of super hybrid rice. Sci Agric Sin, 2008, 41: 1927-1936. (in Chinese with English abstract)
[24] 凌宇飞, 王锐, 陈志青, 杨硕, 崔培媛, 邢志鹏, 张海鹏, 张洪程. 纳米钼对水稻产量及其形成特征影响的差异. 扬州大学学报(农业与生命科学版), 2020, 41(6): 9-14.
Ling Y F, Wang R, Chen Z Q, Yang S, Cui P Y, Xing Z P, Zhang H P, Zhang H C. Effects of nano-molybdenum on rice yield and yield components. J Yangzhou Univ (Agric Life Sci Edn), 2020, 41(6): 9-14. (in Chinese with English abstract)
[25] 凌启鸿, 张洪程, 蔡建中, 苏祖芳, 凌励. 水稻高产群体质量及其优化控制探讨. 中国农业科学, 1993, 26(6): 1-11.
Ling Q H, Zhang H C, Cai J Z, Su Z F, Ling L. Investigation on the population quality of high yield and its optimizing control programme in rice. Sci Agric Sin, 1993, 26(6): 1-11. (in Chinese with English abstract)
[26] 白亚青, 郭美俊, 张伟莉, 张宇杰, 郭平毅. 叶面喷施钼酸铵对谷子光合特性及产量的影响. 山西农业科学, 2020, 48: 502-504.
Bai Y Q, Guo M J, Zhang W L, Zhang Y J, Guo P Y. Effect of Foliar Application of ammonium molybdate on photosynthetic characteristics and yield of millet. J Shanxi Agric Sci, 2020, 48: 502-504. (in Chinese with English abstract)
[27] 魏海燕, 张洪程, 戴其根, 霍中洋, 许轲, 杭杰, 马群, 张胜飞, 张庆, 刘艳阳. 不同水稻氮利用效率基因型的物质生产与积累特性. 作物学报, 2007, 33: 1802-1809.
Wei H Y, Zhang H C, Dai Q G, Huo Z Y, Xu K, Hang J, Ma Q, Zhang S F, Zhang Q, Liu Y Y. Characteristics of matter production and accumulation of rice genotypes with different nitrogen use efficiency. Acta Agron Sin, 2007, 33: 1802-1809. (in Chinese with English abstract)
[28] 侯云鹏, 韩立国, 孔丽丽, 尹彩侠, 秦裕波, 李前, 谢佳贵. 不同施氮水平下水稻的养分吸收、转运及土壤氮素平衡. 植物营养与肥料学报, 2015, 21: 836-845.
Hou Y P, Han L G, Kong L L, Yin C X, Qin Y B, Li Q, Xie J G. Nutrient absorption, translocation in rice and soil nitrogen equilibrium under different nitrogen application doses. Plant Nutr Fert Sci, 2015, 21: 836-845. (in Chinese with English abstract)
[29] Tirol-Padre A, Ladha J K, Singh U, Laureles E, Punzalan G, Akita S. Grain yield performance of rice genotypes at suboptimal levels of soil N as affected by N uptake and utilization efficiency. Field Crops Res, 1996, 46: 127-143.
doi: 10.1016/0378-4290(95)00095-X
[30] Inthapanya I P, Sihavong P, Sihathep V, Chanphengsay M, Ukai S F, Basnayake J. Genotype differences in nutrient uptake and utilization for grain yield production of rainfed lowland rice under fertilized and non-fertilized condition. Field Crops Res, 2000, 65: 57-68.
doi: 10.1016/S0378-4290(99)00070-2
[31] 董桂春, 王熠, 于小凤, 周娟, 彭斌, 李进前, 田昊, 张燕, 袁秋梅, 王余龙. 不同生育期水稻品种氮素吸收利用的差异. 中国农业科学, 2011, 44: 4570-4582.
Dong G C, Wang Y, Yu X F, Zhou J, Peng B, Li J Q, Tian H, Zhang Y, Yuan Q M, Wang Y L. Differences in nitrogen absorption and utilization of rice varieties in different growth periods. Sci Agric Sin, 2011, 44: 4570-4582. (in Chinese with English abstract)
[32] Liu L, Xiao W, Li L, Li D M, Gao D S, Zhu C Y, Fu X L. Effect of exogenously applied molybdenum on its absorption and nitrate metabolism in strawberry seedlings. Plant Physiol Biochem, 2017, 115: 200-211.
doi: 10.1016/j.plaphy.2017.03.015
[33] 董桂春, 王余龙, 张传胜, 张岳芳, 陈培峰, 杨连新, 黄建晔, 龙银成. 氮素籽粒生产效率不同的籼稻品种物质生产和分配的基本特点. 作物学报, 2007, 33: 137-142.
Dong G C, Wang Y L, Zhang C S, Zhang Y F, Chen P F, Yang L X, Huang J Y, Long Y C. Characteristics of dry matter accumulation and distribution in conventional indica rice cultivars with different nitrogen use efficiency for grain output. Acta Agron Sin, 2007, 33: 137-142. (in Chinese with English abstract)
[34] 吴越, 胡静, 陈琛, 张家星, 李万元, 唐东南, 仲军, 羊彬, 朱正康, 姚友礼, 王余龙, 董桂春. 江苏省早熟晚粳高产水稻新品种氮素吸收利用特征及成因分析. 中国水稻科学, 2017, 31: 619-630.
doi: 10.16819/j.1001-7216.2017.7014
Wu Y, Hu J, Chen C, Zhang J X, Li W Y, Tang D N, Zhong J, Yang B, Zhu Z K, Yao Y L, Wang Y L, Dong G C. Nitrogen absorption and utilization characteristics of the newly approved early-maturity late japonica rice cultivars in Jiangsu province. Chin J Rice Sci, 2017, 31: 619-630 (in Chinese with English abstract).
[35] 江立庚, 曹卫星, 甘秀芹, 韦善清, 徐建云, 董登峰, 陈念平, 陆福勇, 秦华东. 不同施氮水平对南方早稻氮素吸收利用及其产量和品质的影响. 中国农业科学, 2004, 37: 490-496.
Jiang L G, Cao W X, Gan X Q, Wei S Q, Xu J Y, Dong D F, Chen N P, Lu F Y, Qin H D. Nitrogen uptake and utilization under different nitrogen management and influence on grain yield and quality in rice. Sci Agric Sin, 2004, 37: 490-496. (in Chinese with English abstract)
[36] 刘立军, 桑大志, 刘翠莲, 王志琴, 杨建昌, 朱庆森. 实时实地氮肥管理对水稻产量和氮素利用率的影响. 中国农业科学, 2003, 36: 1456-1461.
Liu L J, Sang D Z, Liu C L, Wang Z Q, Yang J C, Zhu Q S. Effects of real-time and site-specific nitrogen managements on rice yield and nitrogen use efficiency. Sci Agric Sin, 2003, 36: 1456-1461. (in Chinese with English abstract)
[1] XUE Jiao, LU Dong-Bai, LIU Wei, LU Zhan-Hua, WANG Shi-Guang, WANG Xiao-Fei, FANG Zhi-Qiang, HE Xiu-Ying. Genetic analysis and fine mapping of a bacterial blight resistance major QTL qBB-11-1 in high-quality rice ‘Yuenong Simiao’ [J]. Acta Agronomica Sinica, 2022, 48(9): 2210-2220.
[2] HUANG Yi-Wen, SUN Bin, CHENG Can, NIU Fu-An, ZHOU Ji-Hua, ZHANG An-Peng, TU Rong-Jian, LI Yao, YAO Yao, DAI Yu-Ting, XIE Kai-Zhen, CHEN Xiao-Rong, CAO Li-Ming, CHU Huang-Wei. QTL mapping of seed storage tolerance in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2255-2264.
[3] ZHOU Qun, YUAN Rui, ZHU Kuan-Yu, WANG Zhi-Qin, YANG Jian-Chang. Characteristics of grain yield and nitrogen absorption and utilization of indica/japonica hybrid rice Yongyou 2640 under different nitrogen application rates [J]. Acta Agronomica Sinica, 2022, 48(9): 2285-2299.
[4] WU La-Mei, YANG Hao-Na, WANG Li-Feng, LI Zu-Ren, DENG Xi-Le, BAI Lian-Yang. Application of weeding bast fiber film in rice seedling field and its effect on rice [J]. Acta Agronomica Sinica, 2022, 48(9): 2315-2324.
[5] WANG Quan, WANG Le-Le, ZHU Tie-Zhong, REN Hao-Jie, WANG Hui, CHEN Ting-Ting, JIN Ping, WU LI-Quan, YANG Ru, YOU Cui-Cui, KE Jian, HE Hai-Bing. Effects of HgCl2 on photosynthetic characteristics and its physiological mechanism of rice leaves in vitro feeding [J]. Acta Agronomica Sinica, 2022, 48(9): 2377-2389.
[6] SANG Guo-Qing, TANG Zhi-Guang, MAO Ke-Biao, DENG Gang, WANG Jing-Wen, LI Jia. High-resolution paddy rice mapping using Sentinel data based on GEE platform: a case study of Hunan province, China [J]. Acta Agronomica Sinica, 2022, 48(9): 2409-2420.
[7] ZHU Chun-Quan, WEI Qian-Qian, XIANG Xing-Jia, HU Wen-Jun, XU Qing-Shan, CAO Xiao-Chuang, ZHU Lian-Feng, KONG Ya-Li, LIU Jia, JIN Qian-Yu, ZHANG Jun-Hua. Regulation effects of seedling raising by melatonin and methyl jasmonate substrate on low temperature stress tolerance in rice [J]. Acta Agronomica Sinica, 2022, 48(8): 2016-2027.
[8] LIU Kun, HUANG Jian, ZHOU Shen-Qi, ZHANG Wei-Yang, ZHANG Hao, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang. Effects of panicle nitrogen fertilizer rates on grain yield in super rice varieties with different panicle sizes and their mechanism [J]. Acta Agronomica Sinica, 2022, 48(8): 2028-2040.
[9] WEI Gang, CHEN Dan-Yang, REN De-Yong, YANG Hong-Xia, WU Jing-Wen, FENG Ping, WANG Nan. Identification and gene mapping of slender stem mutant sr10 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(8): 2125-2133.
[10] ZHOU Chi-Yan, LI Guo-Hui, XU Ke, ZHANG Chen-Hui, YANG Zi-Jun, ZHANG Fen-Fang, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Characteristics of vascular bundle of peduncle and flag leaf and assimilates translocation in leaves and stems of different types of rice varieties [J]. Acta Agronomica Sinica, 2022, 48(8): 2053-2065.
[11] CHEN Chi, CHEN Dai-Bo, SUN Zhi-Hao, PENG Ze-Qun, Adil Abbas, HE Deng-Mei, ZHANG Ying-Xin, CHENG Hai-Tao, YU Ping, MA Zhao-Hui, SONG Jian, CAO Li-Yong, CHENG Shi-Hua, SUN Lian-Ping, ZHAN Xiao-Deng, LYU Wen-Yan. Characterization and genetic mapping of a classic-abortive-type recessive genic-male-sterile mutant ap90 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(7): 1569-1582.
[12] HUANG Fu-Deng, HUANG Yan, JIN Ze-Yan, HE Huan-Huan, LI Chun-Shou, CHENG Fang-Min, PAN Gang. Physiological characters and gene mapping of a precocious leaf senescence mutant ospls7 in rice (Orzo sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(7): 1832-1842.
[13] TAO Yu, YAO Yu, WANG Kun-Ting, XING Zhi-Peng, ZHAI Hai-Tao, FENG Yuan, LIU Qiu-Yuan, HU Ya-Jie, GUO Bao-Wei, WEI Hai-Yan, ZHANG Hong-Cheng. Combined effects of panicle nitrogen fertilizer amount and shading during grain filling period on grain quality of conventional japonica rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1730-1745.
[14] YANG Fei, ZHANG Zheng-Feng, NAN Bo, XIAO Ben-Ze. Genome-wide association analysis and candidate gene selection of yield related traits in rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1813-1821.
[15] YUAN Shen, PENG Shao-Bing. Comparison of grain heavy metal concentration between main and ratoon seasons of ratoon rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1822-1831.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!