Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (12): 3144-3154.doi: 10.3724/SP.J.1006.2022.11117

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Characteristics of yield components, nitrogen accumulation and translocation, and grain quality of semi-winter cultivars with high-yield and high-efficiency

DING Yong-Gang(), CHEN Li, DONG Jin-Xing, ZHU Min, LI Chun-Yan, ZHU Xin-Kai, DING Jin-Feng(), GUO Wen-Shan()   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Cultivation and Physiology / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Wheat Research Institute, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2021-12-31 Accepted:2022-03-25 Online:2022-12-12 Published:2022-04-19
  • Contact: DING Jin-Feng,GUO Wen-Shan E-mail:dygwheat@163.com;jfdin@yzu.edu.cn;guows@yzu.edu.cn.
  • Supported by:
    National Natural Science Foundation of China(31771711);National Natural Science Foundation of China(32172111);National Key Research and Development Program of China(2016YFD0300405);Technology System of Modern Agriculture Industry (wheat) in Jiangsu Province, the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Project of the Vice General Manager of Science and Technology of Jiangsu Province(FZ20211472);Plan of Gathering 1000 Leading Talents of Suqian

Abstract:

To provide a theoretical support for the synergic production of good quality, high yield, and high efficiency of semi-winter type wheat, the field experiment was conducted with 22 cultivars for three consecutive growth seasons in Suining, Jiangsu province, China. To investigate the differences in yield components, N uptake and utilization, and grain quality between the groups, according to grain yield and nitrogen use efficiency (NUE), cultivars were divided into high-yield and -efficiency (HH), medium-yield and -efficiency (MM), and low-yield and -efficiency (LL) groups using systematic clustering. The results showed that grain yield and NUE of the HH group were significantly higher than MM and LL groups in the three wheat seasons. Compared with the other groups, HH group had a higher grain yield because of more grain numbers, namely, more spikes and grains per spike, and a greater NUE of HH group due to increasing N uptake efficiency (NUpE) and N utilization efficiency (NUtE). The high NUpE of HH group was mainly depended on improving N uptake before anthesis, which could promote N translocation into grains and increase N accumulation in grains. The results also indicated that grain yield and grain number were synergistically increased with N accumulation per grain in a certain range. When grain yield was more than 9.5 t hm-2 or the total grains were higher than 2.2×108 hm-2, N accumulation per grain was a decreasing trend. The grain protein content, wet gluten content, and sedimentation value of the HH group were significantly higher than MM and LL groups. In conclusion, the semi-winter cultivars with high-yield and high-efficiency had the characteristics of high grain number, strong N uptake and translocation ability, and high grain N accumulation. Furthermore, grain protein quality could be improved by enhancing N accumulation per grain.

Key words: semi-winter wheat cultivar, grain yield, nitrogen use efficiency, yield components, nitrogen accumulation and translocation, grain quality

Table 1

Soil nutrient contents in experimental fields during wheat growth seasons from 2016 to 2019"

取样日期
Sampling date
(year-month-day)
速效氮
Available nitrogen
(mg kg-1)
速效磷
Available phosphorus
(mg kg-1)
速效钾
Available potassium
(mg kg-1)
有机质
Organic matter
(g kg-1)
2016-11-18 71.09 16.03 103.00 15.29
2017-11-01 66.07 44.31 69.65 15.17
2018-10-30 106.00 43.20 116.00 11.70

Fig. 1

Precipitation and daily mean temperature in the experimental site during wheat growth of 2016-2017 (2017), 2017-2018 (2018), and 2018-2019 (2019)"

Table 2

Cultivars and their release times used in this study"

序号Number 品种
Cultivar name
审定时间
Released time
序号
Number
品种
Cultivar name
审定时间
Released time
1 保麦2号 Baomai 2 2012 12 新麦26 Xinmai 26 2010
2 保麦5号 Baomai 5 2014 13 徐麦33 Xumai 33 2013
3 淮麦32 Huaimai 32 2012 14 徐麦9158 Xumai 9158 2014
4 淮麦33 Huaimai 33 2014 15 烟农19 Yannong 19 2001
5 江麦919 Jiangmai 919 2013 16 烟农999 Yannong 999 2016
6 连麦7号 Lianmai 7 2014 17 安农0711 Annong 0711 2014
7 明麦1号 Mingmai 1 2009 18 鄂麦580 Emai 580 2012
8 瑞华麦520 Ruihuamai 520 2015 19 鄂麦596 Emai 596 2009
9 冠麦1号Guanmai 1 2016 20 郑麦9023 Zhengmai 9023 2001
10 保麦6号 Baomai 6 2015 21 淮麦35 Huaimai 35 2013
11 中育1211 Zhongyu 1211 2017 22 济麦22 Jimai 22 2006

Table 3

Cluster analysis of grain yield and nitrogen use efficiency among cultivars"

年份
Year
类型
Group
籽粒产量
Grain yield
(t hm-2)
变异范围
Range
(t hm-2)
氮肥利用效率 NUE
(kg kg-1)
变异范围
Range
(kg kg-1)
品种序号
Serial number of cultivars
个数 Number 占比
Proportion (%)
2017 高产高效 HH 8.9 ± 0.4 a 8.2-9.5 23.3 ± 1.1 a 21.9-25.2 2, 4, 5, 8, 9, 10, 11, 15, 21 9 41
中产中效 MM 8.2 ± 0.5 b 7.3-8.7 19.1 ± 1.7 b 16.1-21.1 3, 6, 7, 12, 13, 14, 16, 18, 19, 22 10 45
低产低效 LL 6.8 ± 0.4 c 6.5-7.2 13.0 ± 1.6 c 11.3-14.5 1, 17, 20 3 14
2018 高产高效 HH 7.4 ± 0.2 a 7.0-7.6 15.6 ± 1.0 a 14.0-16.9 2, 7, 13, 17, 20, 21, 22 7 32
中产中效 MM 6.7 ± 0.2 b 6.9-6.4 12.7 ± 0.5 b 12.1-13.5 3, 4, 9, 11, 14, 15 6 27
低产低效 LL 6.0 ± 0.3 c 5.2-6.3 10.2 ± 0.7 c 9.1-11.2 1, 5, 6, 8, 10, 12, 16, 18, 19 9 41
2019 高产高效 HH 9.4 ± 0.4 a 8.6-9.8 19.2 ± 1.3 a 17.8-21.7 2, 4, 11, 13, 14, 16, 17, 19, 20, 21, 22 11 50
中产中效 MM 8.9 ± 0.3 a 8.3-9.1 16.1 ± 0.4 b 15.6-16.7 3, 5, 7, 10, 15, 18 6 27
低产低效 LL 8.0 ± 0.5 b 7.4-8.7 13.2 ± 1.5 c 11.8-14.4 1, 6, 8, 9, 12 5 23

Table 4

Differences of yield components among different groups of wheat cultivars"

年份
Year
类型
Group
穗数
Spike number (×104 hm-2)
穗粒数
Grains per spike
总结实粒数
Grain number (×108 hm-2)
千粒重
1000-grain weight (g)
2017 高产高效 HH 513 ± 22 a 40.57 ± 0.78 a 2.08 ± 0.01 a 45.25 ± 0.78 a
中产中效 MM 475 ± 23 b 39.22 ± 1.91 a 1.87 ± 0.13 b 45.08 ± 0.05 a
低产低效 LL 419 ± 32 c 36.32 ± 2.81 b 1.51 ± 0.14 c 44.49 ± 0.04 a
2018 高产高效 HH 493 ± 16 a 38.19 ± 0.52 a 1.87 ± 0.67 a 41.07 ± 0.91 a
中产中效 MM 462 ± 25 b 38.14 ± 1.29 a 1.76 ± 0.92 b 39.19 ± 1.86 a
低产低效 LL 430 ± 22 c 36.43 ± 0.85 b 1.58 ± 0.80 c 39.13 ± 0.70 b
2019 高产高效 HH 592 ± 36 a 37.32 ± 0.80 a 2.20 ± 0.01 a 43.69 ± 1.05 a
中产中效 MM 569 ± 27 ab 37.50 ± 0.98 a 2.14 ± 0.01 a 42.57 ± 1.33 a
低产低效 LL 539 ± 10 b 35.10 ± 1.80 b 1.89 ± 0.11 b 43.28 ± 1.61 a

Table 5

Correlation analysis between grain yield and its components among cultivars"

产量构成
Yield component
籽粒产量 Grain yield
2017 2018 2019
穗数 Spike number 0.87 ** 0.86 ** 0.78 **
穗粒数Grains per spike 0.68 ** 0.53 ** 0.60 **
总结实粒数 Total grains 0.86 ** 0.91 ** 0.86 **
千粒重1000-grain weight 0.23 ns 0.57 ** 0.27 ns

Table 6

Differences of nitrogen uptake efficiency and nitrogen utilization efficiency among different groups of wheat cultivar"

类型
Group
2017 2018 2019
氮肥吸收效率
NUpE (%)
氮肥生理利用效率
NUtE (kg kg-1)
氮肥吸收效率
NUpE (%)
氮肥生理利用效率
NUtE (kg kg-1)
氮肥吸收效率
NUpE (%)
氮肥生理利用效率
NUtE (kg kg-1)
高产高效 HH 50.1 ± 2.3 a 46.4 ± 0.9 a 44.8 ± 4.5 a 35.1 ± 4.0 a 48.1 ± 3.1 a 39.9 ± 2.8 a
中产中效 MM 42.6 ± 3.8 b 45.0 ± 3.8 a 35.4 ± 3.6 b 36.1 ± 4.3 a 42.4 ± 2.9 b 38.1 ± 2.6 a
低产低效 LL 35.4 ± 1.7 c 36.9 ± 5.4 b 31.1 ± 4.2 c 33.2 ± 4.5 a 39.3 ± 1.6 b 33.6 ± 3.5 b

Fig. 2

Correlation analysis between NUE and NUpE, NUtE among cultivars ** and ns indicate significant correlation at P < 0.01 and P > 0.05, respectively. Abbreviations are the same as those given in Tables 3 and 6."

Table 7

Differences of nitrogen accumulation and translocation among various groups of wheat cultivars"

年份
Year
类型
Group
花前氮素积累量
NA at pre-anthesis
(kg hm-2)
花后氮素积累量
NA at post-anthesis
(kg hm-2)
花前氮素转运量
N translocation at pre-anthesis (kg hm-2)
花前氮素转运率
N translocation efficiency at pre-anthesis (%)
2017 高产高效HH 177 ± 10 a 36.6 ± 4.1 a 122 ± 5 a 69.3 ± 2.6 a
中产中效MM 155 ± 14 b 35.0 ± 7.4 a 102 ± 12 b 65.7 ± 5.5 a
低产低效LL 126 ± 5 c 37.3 ± 2.3 a 85 ± 6 c 67.5 ± 2.3 a
2018 高产高效HH 160 ± 6 a 32.2 ± 9.0 a 120 ± 5 a 74.6 ± 6.4 a
中产中效MM 151 ± 4 b 30.2 ± 4.9 a 114 ± 6 a 74.9 ± 4.7 a
低产低效LL 141 ± 8 c 29.9 ± 3.6 a 102 ± 9 b 73.2 ± 3.7 a
2019 高产高效HH 175 ± 9 a 44.8 ± 8.3 a 127 ± 8 a 73.9 ± 4.3 a
中产中效MM 155 ± 9 ab 43.8 ± 9.2 a 113 ± 8 b 72.2 ± 3.4 a
低产低效LL 143 ± 12 b 43.1 ± 5.4 a 102 ± 3 c 71.6 ± 3.9 a

Table 8

Correlation analysis between NUpE and N accumulation, translocation among different cultivars"

氮素积累和转运
N accumulation and translocation
氮肥吸收效率 NUpE (%)
2017 2018 2019
花前氮素积累量 NA at pre-anthesis 0.84 ** 0.86 ** 0.76 **
花后氮素积累量 NA at post-anthesis 0.15 ns 0.09 ns 0.50 *
花前氮素转运量 N translocation at pre-anthesis 0.80 ** 0.65 ** 0.61 **
花前氮素转运率 N translocation efficiency 0.15 ns 0.16 ns 0.01 ns

Fig. 3

Grain N accumulation, vegetative organs N accumulation at maturity stage, and N accumulation per grain among different groups of wheat cultivars Different lowercase letters on the bars indicate significant differences between cultivar groups at P < 0.05. Abbreviations are the same as those given in Table 7. HH: high-yield and -efficiency; MM: medium-yield and -efficiency; LL: low-yield and -efficiency."

Fig 4

Correlation analysis between grain yield (A), grain number (B), and NA per grain among cultivars ** indicates significant correlation at P < 0.01. Abbreviations are the same as those given in Table 7."

Fig. 5

Differences of protein content, wet gluten content, and sedimentation value among different groups of wheat cultivars Different lowercase letters on the bars indicate there are significant differences between cultivar groups at P < 0.05. HH: high-yield and -efficiency; MM: medium-yield and -efficiency; LL: low-yield and -efficiency."

Table 9

Correlation analysis between NA per grain and protein content, wet gluten content, and sedimentation value among cultivars"

品质性状
Quality trait
单粒氮素积累量 NA per grain
2017 2018 2019
蛋白质含量 Protein content 0.73 ** 0.65 ** 0.80 **
湿面筋含量 Wet gluten content 0.63 ** 0.58 ** 0.68 **
沉降值Sedimentation value 0.70 ** 0.64 ** 0.52 *
[1] 吕广德, 王超, 靳雪梅, 徐加利, 王瑞霞, 孙宪印, 钱兆国, 吴科. 水氮组合对冬小麦干物质及氮素积累和产量的影响. 应用生态学报, 2020, 31: 2593-2603.
doi: 10.13287/j.1001-9332.202008.029
Lyu G D, Wang C, Jin X M, Xu J L, Wang R X, Sun X Y, Qian Z G, Wu K. Effects of water-nitrogen combination on dry matter, nitrogen accumulation and yield of winter wheat. Chin J Appl Ecol, 2020, 31: 2593-2603. (in Chinese with English abstract)
[2] Yang X L, Lu Y L, Ding Y, Yin X F, Raza S J, Tong Y A. Optimising nitrogen fertilisation: a key to improving nitrogen-use efficiency and minimising nitrate leaching losses in an intensive wheat/maize rotation (2008-2014). Field Crops Res, 2017, 206: 1-10.
doi: 10.1016/j.fcr.2017.02.016
[3] Rasmussen I S, Dresbøll D B, Thorup-Kristensen K. Winter wheat cultivars and nitrogen (N) fertilization-Effects on root growth, N uptake efficiency and N use efficiency. Eur J Agron, 2015, 68: 38-49
doi: 10.1016/j.eja.2015.04.003
[4] 熊淑萍, 吴克远, 王小纯, 张捷, 杜盼, 吴懿鑫, 马新明. 不同氮效率基因型小麦根系吸收特性与氮素利用差异的分析. 中国农业科学, 2016, 49: 2267-2279.
Xiong S P, Wu K Y, Wang X C, Zhang J, Du P, Wu Y X, Ma X M. Analysis of root absorption characteristics and nitrogen utilization of wheat genotypes with different N efficiency. Sci Agric Sin, 2016, 49: 2267-2279. (in Chinese with English abstract)
[5] Kant S. Understanding nitrate uptake, signaling and remobilisation for improving plant nitrogen use efficiency. Semin Cell Dev Biol, 2018, 74: 89-96.
doi: S1084-9521(17)30329-4 pmid: 28838687
[6] Sinha S K, Kumar A, Tyagi A, Venkatesh K, Paul D, Singh N K, Mandal P K. Root architecture traits variation and nitrate-influx responses in diverse wheat genotypes under different external nitrogen concentrations. Plant Physiol Biochem, 2020, 148: 246-259.
doi: 10.1016/j.plaphy.2020.01.018
[7] Cassman K G, Dobermann A R, Walters D T, Yang H S. Meeting cereal demand while protecting natural resources and improving environmental quality. Annu Rev Env Resour, 2003, 28: 315-358.
[8] Good A G, Shrawat A K, Muench D G. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci, 2004, 9: 597-605.
pmid: 15564127
[9] Tian H, Fu J, Drijber R A, Gao Y J. Expression patterns of five genes involved in nitrogen metabolism in two winter wheat (Triticum aestivum L.) genotypes with high and low nitrogen utilization efficiencies. J Cereal Sci, 2015, 61: 48-54.
doi: 10.1016/j.jcs.2014.09.007
[10] Zheng B Q, Zhang X Q, Wang Q, Li W Y, Huang M, Zhou Q, Cai J, Wang X, Cao W X, Dai T B, Jiang D. Increasing plant density improves grain yield, protein quality and nitrogen agronomic efficiency of soft wheat cultivars with reduced nitrogen rate. Field Crops Res, 2021, 267: 108145.
[11] 薛艳芳, 韩小伟, 张慧, 高英波, 钱欣, 蒋丽萍, 崔振岭, 李宗新, 刘开昌. 不同氮效率玉米品种灌浆期氮素转运特性和产量对氮素形态的响应. 玉米科学, 2020, 28(3): 163-172.
Xue Y F, Han X W, Zhang H, Gao Y B, Qian X, Jiang L Y, Cui Z L, Li Z X, Liu K C. Characteristics of nitrogen translocation during the grain-filling period and grain yield of different maize cultivars with varied nitrogen efficiencies in response to different nitrogen forms. J Maize Sci, 2020, 28(3): 163-172. (in Chinese with English abstract)
[12] Li J P, Wang Z M, Yao C S, Zhang Z, Liu Y, Zhang Y H. Micro-sprinkling irrigation simultaneously improves grain yield and protein concentration of winter wheat in the North China Plain. Crop J, 2021, 9: 1397-1407.
doi: 10.1016/j.cj.2020.12.009
[13] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响. 作物学报, 2022, 48: 716-725.
doi: 10.3724/SP.J.1006.2022.11012
Liu Y J, Zheng F N, Zhang X, Chu J P, Yu H T, Dai X L, He M R. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat. Acta Agron Sin, 2022, 48: 716-725. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.11012
[14] Acreche M M, Slafer G A. Variation of grain nitrogen content in relation with grain yield in old and modern Spanish wheats grown under a wide range of agronomic conditions in a Mediterranean region. J Agric Sci, 2009, 147: 657-667.
doi: 10.1017/S0021859609990190
[15] 王化敦, 史高玲, 张平平, 张鹏, 高春蕾, 姚金保, 马鸿翔. 长江中下游小麦品种籽粒品质对氮素的敏感性分析. 南方农业学报, 2017, 48: 1568-1573.
Wang H D, Shi G L, Zhang P P, Zhang P, Gao C L, Yao J B, Ma H X. Sensitivity of wheat grain quality to nitrogen application in middle and lower reaches of Yangtze River. J South Agric, 2017, 48: 1568-1573. (in Chinese with English abstract)
[16] 赵广才. 小麦高产创建. 北京: 中国农业出版社, 2014, p 12.
Zhao G C. High Yield Creation of Wheat. Beijing: China Agriculture Press, 2014. p 12. (in Chinese)
[17] 马庆, 张玉坤. 近十年安徽省淮北半冬性小麦区试品种品质分析. 种子, 2020, 39(6): 99-103.
Ma Q, Zhang Y K. Quality analysis of trial varieties planted in semi-winter wheat area in Huaibei region of Anhui province in recent ten years. Seed, 2020, 39(6): 99-103. (in Chinese)
[18] Call L, Kapeller M, Grausgruber H, Reiter E, Schoenlechner R, D’Amico S. Effects of species and breeding on wheat protein composition, J Cereal Sci, 2020, 93: 102974.
[19] 国家质量技术监督局. 小麦粉湿面筋测定方法, GB/T 14608-1993, 1993.
Supervising Department of Quality and Technology of China. Method for determination of wet gluten in flour, GB/T 14608-1993, 1993. (in Chinese)
[20] Tian Z W, Jing Q, Dai T B, Jiang D, Cao W X. Effects of genetic improvements on grain yield and agronomic traits of winter wheat in the Yangtze River Basin of China. Field Crops Res, 2011, 124: 417-425.
doi: 10.1016/j.fcr.2011.07.012
[21] Peng C J, Zhang Z C, Li Y, Zhang Y, Dong H B, Fang Y H, Han L P, Xu W G, Hu L. Genetic improvement analysis of nitrogen uptake, utilization, translocation, and distribution in Chinese wheat in Henan province. Field Crops Res, 2022, 277: 108406.
[22] 丁永刚, 李福建, 王亚华, 汤小庆, 杜同庆, 朱敏, 李春燕, 朱新开, 丁锦峰, 郭文善. 稻茬小麦氮高效品种产量构成和群体质量特征. 作物学报, 2020, 46: 544-556.
doi: 10.3724/SP.J.1006.2020.91041
Ding Y G, Li F J, Wang Y H, Tang X Q, Du T Q, Zhu M, Li C Y, Zhu X K, Ding J F, Guo W S. Characteristics of yield components and population quality in high-nitrogen-utilization wheat cultivars. Acta Agron Sin, 2020, 46: 544-556. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.91041
[23] Liu Y, Liao Y C, Liu W Z. High nitrogen application rate and planting density reduce wheat grain yield by reducing filling rate of inferior grain in middle spikelets. Crop J, 2021, 9: 412-426.
doi: 10.1016/j.cj.2020.06.013
[24] 张向前, 乔玉强, 杜世州, 赵竹. 早播下不同类型小麦品种叶片光合及籽粒灌浆的差异. 麦类作物学报, 2014, 34: 1225-1232.
Zhang X Q, Qiao Y Q, Du S Z, Zhao Z. Differences in leaf photosynthesis and grain filling rate among different types of wheat variety under early sowing. J Triticeae Crops, 2014, 34: 1225-1232. (in Chinese with English abstract)
[25] Tian Z W, Li Y, Liang Z H, Guo H, Cai J, Jiang D, Cao W X, Dai T B. Genetic improvement of nitrogen uptake and utilization of winter wheat in the Yangtze River Basin of China. Field Crops Res, 2016, 196: 251-260.
doi: 10.1016/j.fcr.2016.07.007
[26] Xu C L, Tao H B, Wang P, Wang Z L. Slight shading after anthesis increases photosynthetic productivity and grain yield of winter wheat (Triticum aestivum L.) due to the delaying of leaf senescence. J Integr Agric, 2016, 15: 63-75.
doi: 10.1016/S2095-3119(15)61047-4
[27] 徐彩龙, 王振林, 尹燕枰, 蔡瑞国, 王平, 郭俊祥, 李勇, 翟学旭, 刘铁宁. 15N示踪法研究弱光对不同穗型冬小麦氮素积累和转运的影响. 植物营养与肥料学报, 2013, 19: 1-10.
Xu C L, Wang Z L, Yin Y P, Cai R G, Wang P, Guo J X, Li Y, Zhai X X, Liu T N. Effect of shading on nitrogen accumulation and translocation of winter wheat with different spike types using 15N tracer technique. Plant Nutr Fert Sci, 2013, 19: 1-10. (in Chinese with English abstract)
[28] Gaju O, Allard V, Martre P, Snape J W, Heumez E, LeGouis J, Moreau D, Bogard M, Griffiths S, Orford S, Hubbart S, Foulkes M J. Identification of traits to improve the nitrogen-use efficiency of wheat genotypes. Field Crops Res, 2011, 123: 139-152.
doi: 10.1016/j.fcr.2011.05.010
[29] Papakosta D K, Gagianas A A. Nitrogen and dry matter accumulation, remobilization, and losses for Mediterranean wheat during grain filling. Agron J, 1991, 83: 864-870.
doi: 10.2134/agronj1991.00021962008300050018x
[30] 樊玉参, 石玉, 于振文, 张永丽. 不同产量潜力小麦品种氮素积累与转运的差异. 麦类作物学报, 2021, 41: 1496-1502.
Fan Y S, Shi Y, Yu Z W, Zhang Y L. Difference of nitrogen accumulation and translocation of wheat varieties with different yield potential. J Triticeae Crops, 2021, 41: 1496-1502. (in Chinese with English abstract)
[31] 李欣欣, 石祖梁, 王久臣, 王飞, 徐志宇, 江荣风. 稻茬冬小麦氮肥吸收、残留和损失特性. 应用生态学报, 2020, 31: 3691-3699.
doi: 10.13287/j.1001-9332.202011.021
Li X X, Shi Z L, Wang J C, Wang F, Xu Z Y, Jiang R F. Characteristics of uptake, residual and loss of nitrogen fertilizer in winter wheat after rice stubble. Chin J Appl Ecol, 2020, 31: 3691-3699. (in Chinese with English abstract)
[32] 丁永刚, 汤小庆, 梁鹏, 罗周, 朱敏, 李春燕, 朱新开, 丁锦峰, 郭文善. 减氮对不同氮效率小麦品种花后光合物质生产力和产量的影响. 麦类作物学报, 2021, 41: 490-498.
Ding Y G, Tang X Q, Liang P, Luo Z, Zhu M, Li C Y, Zhu X K, Ding J F, Guo W S. Effects of reduced nitrogen application on post-anthesis photosynthetic production and grain yield of wheat cultivars with various nitrogen utilization efficiency. J Triticeae Crops, 2021, 41: 490-498. (in Chinese with English abstract)
[33] 李欣欣, 石祖梁, 王久臣, 徐志宇, 江荣风. 氮肥基追比对稻茬小麦氮素转运及利用的影响. 麦类作物学报, 2021, 41: 61-71.
Li X X, Shi Z L, Wang J C, Xu Z Y, Jiang R F. Effect of nitrogen application on nitrogen translocation and utilization in winter wheat in rice-wheat rotation. J Triticeae Crops, 2021, 41: 61-71. (in Chinese with English abstract)
[34] 张丽霞, 杨永辉, 尹钧, 武继承, 潘晓莹. 水肥一体化对小麦干物质和氮素积累转运及产量的影响. 农业机械学报, 2021, 52(2): 275-282.
Zhang L X, Yang Y H, Yin J, Wu J C, Pan X Y. Effects of drip fertigation on accumulation and translocation of dry matter and nitrogen together with yield in wheat. Trans CSAM, 2021, 52(2): 275-282. (in Chinese with English abstract)
[35] Pommel B, Gallais A, Coque M, Quilleré I, Hirel B, Prioul J L, Andrieu B, Floriot M. Carbon and nitrogen allocation and grain filling in three maize hybrids differing in leaf senescence. Eur J Agron, 2006, 24: 203-211.
doi: 10.1016/j.eja.2005.10.001
[36] Okami M, Kato Y, Yamagishi J. Role of early vigor in adaptation of rice to water-saving aerobic culture: Effects of nitrogen utilization and leaf growth. Field Crops Res, 2011, 124: 124-131.
doi: 10.1016/j.fcr.2011.06.013
[37] Rajala A, Hakala K, Mäkelä P, Muurinen S, Peltonen-Sainio P. Spring wheat response to timing of water deficit through sink and grain filling capacity. Field Crops Res, 2009, 114: 263-271.
doi: 10.1016/j.fcr.2009.08.007
[1] CHEN Jia-Jun, LIN Xiang, GU Shu-Bo, WANG Wei-Yan, ZHANG Bao-Jun, ZHU Jun-Ke, WANG Dong. Effects of foliar spraying of urea post anthesis on nitrogen uptake and utilization and yield in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(1): 277-285.
[2] CHEN Bing-Jie, ZHANG Fu-Liang, YANG Shuo, LI Xiao-Li, HE Tang-Qing, ZHANG Chen-Xi, TIAN Ming-Hui, WU Mei, HAO Xiao-Feng, ZHANG Xue-Lin. Effects of arbuscular mycorrhizae fungi on maize physiological characteristics during grain filling stage, yield, and grain quality under different nitrogen fertilizer forms [J]. Acta Agronomica Sinica, 2023, 49(1): 249-261.
[3] ZHOU Qun, YUAN Rui, ZHU Kuan-Yu, WANG Zhi-Qin, YANG Jian-Chang. Characteristics of grain yield and nitrogen absorption and utilization of indica/japonica hybrid rice Yongyou 2640 under different nitrogen application rates [J]. Acta Agronomica Sinica, 2022, 48(9): 2285-2299.
[4] TAO Yu, YAO Yu, WANG Kun-Ting, XING Zhi-Peng, ZHAI Hai-Tao, FENG Yuan, LIU Qiu-Yuan, HU Ya-Jie, GUO Bao-Wei, WEI Hai-Yan, ZHANG Hong-Cheng. Combined effects of panicle nitrogen fertilizer amount and shading during grain filling period on grain quality of conventional japonica rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1730-1745.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[7] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[8] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
[9] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
[10] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[11] WANG Yan, CHEN Zhi-Xiong, JIANG Da-Gang, ZHANG Can-Kui, ZHA Man-Rong. Effects of enhancing leaf nitrogen output on tiller growth and carbon metabolism in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 739-746.
[12] XIE Cheng-Hui, MA Hai-Zhao, XU Hong-Wei, XU Xi-Yang, RUAN Guo-Bing, GUO Zheng-Yan, NING Yong-Pei, FENG Yong-Zhong, YANG Gai-He, REN Guang-Xin. Effects of nitrogen rate on growth, grain yield, and nitrogen utilization of multiple cropping proso millet after spring-wheat in Irrigation Area of Ningxia [J]. Acta Agronomica Sinica, 2022, 48(2): 463-477.
[13] WANG Meng, ZHOU Guang-Yuan, GAO Ju-Lin, YU Xiao-Fang, SUN Ji-Ying, HU Shu-Ping, QING Ge-Er, QU Jia-Wei, MA Da-Ling, WANG Zhi-Gang. Distribution and matching characteristics of light and nitrogen in maize canopy of high-density tolerance varieties [J]. Acta Agronomica Sinica, 2022, 48(12): 3179-3191.
[14] SONG Jie, REN Hao, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LI Liang, WANG Shao-Xiang, HUANG Jin-Ling, LIU Peng. Effect of potassium application on vascular tissue structure and material transport properties in summer maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2022, 48(11): 2908-2919.
[15] KE Jian, CHEN Ting-Ting, XU Hao-Cong, ZHU Tie-Zhong, WU Han, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Effects of different application methods of controlled-release nitrogen fertilizer on grain yield and nitrogen utilization of indica-japonica hybrid rice in pot-seedling mechanically transplanted [J]. Acta Agronomica Sinica, 2021, 47(7): 1372-1382.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[2] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[3] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[4] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[5] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[6] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[7] KE Li-Ping;ZHENG Tao;WU Xue-Long;HE Hai-Yan;CHEN Jin-Qing. Analysis of Self-Incompatibility Locus Gene in Brassica napus[J]. Acta Agron Sin, 2008, 34(05): 764 -769 .
[8] QIN En-Hua;YANG Lan-Fang;. Selenium Content in Seedling and Selenium Forms in Rhizospheric Soil of Nicotiana tabacum L.[J]. Acta Agron Sin, 2008, 34(03): 506 -512 .
[9] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[10] Hu Yuqi;Liao Xiaohai. A STUDY ON THE COEFFICIENT OF LEAVES SHAPE OF MAIZE[J]. Acta Agron Sin, 1986, (01): 71 -72 .