Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (12): 3130-3143.doi: 10.3724/SP.J.1006.2022.13079

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Evaluation and identification index of heat tolerance in different summer maize varieties at V12 stage

ZHU Ya-Di1(), WANG Hui-Qin1, WANG Hong-Zhang1, REN Hao1, LYU Jian-Hua2, ZHAO Bin1, ZHANG Ji-Wang1, REN Bai-Zhao1, YIN Fu-Wei3, LIU Peng1()   

  1. 1State Key Laboratory of Crop Biology, Shandong Agricultural University / College of Agronomy, Shandong Agricultural University, Tai’an 271018, Shandong, China
    2Shandong Seed Management Station, Jinan 250100, Shandong, China
    3Agricultural Technology Promotion Station, Tai’an 271018, Shandong, China
  • Received:2021-12-24 Accepted:2022-05-05 Online:2022-12-12 Published:2022-05-24
  • Contact: LIU Peng E-mail:zyd1678@163.com;liup@sdau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(32071959);Shandong Province Key Research and Development Project(LJNY202103);Shandong Provincial Maize Industry Technology System Project(SDAIT-02-08)

Abstract:

At present, the occurrence times of high temperature stress is moving forward, and the mean temperature of air and duration of high temperature stress are increasing, which makes summer maize vulnerable to high temperature stress at V12 stage. V12 stage is the critical period of young ear differentiation in summer maize, which is sensitive to temperature. High temperature stress during this stage lead to significant decrease in grain yield. Screening heat tolerant varieties and identification index of heat tolerance are the economical and efficient measures to alleviate heat damage. 35 maize hybrids varieties were used as material in this experiment. Artificial warming method of field planting was adopted, and high-temperature treatment in V12 stage was set, which lasted 7 days. According to multiple traits such as yield, ear and tassel morphology, 35 varieties were evaluated and classified for heat tolerance in V12 stage by using correlation analysis and multivariate analysis such as principal component analysis, fuzzy membership function method, cluster analysis, stepwise regression method and grey relation analysis, so as to determine the identification indexes of heat tolerance in V12 stage. The results showed that high temperature stress in V12 stage leads to tassel spikelet number, density, total pollen emission decreased, ear morphology changed, the number of silk and kernels per ear reduced, setting rate reduced, and the increase of grain weight couldn’t compensate for the negative effect caused by the decreased of kernels per ear, which lead to the decreased of grain yield. Heat tolerant varieties Denghai 111, Qiangsheng 339, Ludan 9088, Denghai 605, Derui 88, and Denghai 533 were screened out by cluster analysis. Based on stepwise regression analysis, correlation analysis and grey relation analysis, the grain yield, kernels per ear, setting rate, ear length, ear diameter, the spindle length of tassel with spikelet, and tassel branch length were determined as the identification indexes for heat tolerance of summer maize at V12 stage. Multivariable statistical analysis is an effective way to evaluate the heat tolerance of summer maize, the heat tolerant varieties and identification index which selected in this paper can provide the basis for breeding heat tolerant varieties in future.

Key words: summer maize, high temperature stress, heat tolerance, comprehensive evaluation, identification index

Table 1

Maize hybrid varieties used in this experiment"

序号
Number
品种
Cultivar
序号
Number
品种
Cultivar
序号
Number
品种
Cultivar
1 C1210 13 登海682 Denghai 682 25 农华5号 Nonghua 5
2 C9256 14 登海710 Denghai 710 26 强盛339 Qiangsheng 339
3 MC121 15 迪卡517 Dika 517 27 天泰316 Tiantai 316
4 MC278 16 丰乐365 Fengle 365 28 天泰366 Tiantai 366
5 邦玉519 Bangyu 519 17 丰乐37 Fengle 37 29 天泰619 Tiantai 619
6 德瑞88 Derui 88 18 胶玉1号 Jiaoyu 1 30 万盛69 Wansheng 69
7 登海111 Denghai 111 19 金海2010 Jinhai 2010 31 鑫瑞57 Xinrui 57
8 登海1717 Denghai 1717 20 京农科736 Jingnongke 736 32 裕丰620 Yufeng 620
9 登海518 Denghai 518 21 来玉721 Laiyu 721 33 源丰008 Yuanfeng 008
10 登海533 Denghai 533 22 鲁单9088 Ludan 9088 34 郑原玉432 Zhengyuanyu 432
11 登海605 Denghai 605 23 明天695 Mingtian 695 35 中天303 Zhongtian 303
12 登海653 Denghai 653 24 农华221 Nonghua 221

Fig. 1

Daily mean air temperature, average daily variation of air temperature, and the maximum and minimum air temperature in different treatments HT: high temperature; CK: normal temperature; HT-Tmax: the maximum air temperature of HT; HT-Tmin: the minimum air temperature of HT; CK-Tmax: the maximum air temperature of CK; CK-Tmin: the minimum air temperature of CK."

Fig. 2

Effect of high temperature stress on main traits of summer maize at V12 stage * and ** are significant different at the 0.05 and 0.01 probability levels, respectively. GYD: grain yield (g plant-1); KN: kernels per ear; TGW: 1000-kernel weight (g); SN: silk number; SR: setting rate (%); EL: ear length (cm); ED: ear diameter (mm); BTL: barren tip length (cm); SLTS: The spindle length of tassel with spikelet (cm); TBN: tassel branch number; TBL: tassel branch length (cm); TSSN: tassel spindle spikelet number; TBSN: tassel branch spikelet number; TSSD: tassel spindle spikelet density; TBSD: tassel branch spikelet density; TPE: tassel total pollen emission (g plant-1)."

Table 2

Relative value of each single index of different cultivars"

品种名称
Cultivar name
GYD KN TGW SN SR EL ED BTL SLTS TBN TBL TSSD TBSD TPE
C1210 0.72 0.42 1.28 0.73 0.58 0.98 0.94 3.35 0.94 0.69 1.07 0.95 1.21 0.0371
C9256 0.95 0.53 1.29 0.81 0.65 1.03 0.95 1.49 0.87 0.77 0.89 0.80 0.95 0.0357
MC121 0.65 0.43 1.16 0.90 0.48 0.92 0.88 0 0.95 0.79 0.98 0.95 0.90 0.0355
MC278 0.80 0.54 1.35 0.90 0.59 0.98 0.98 1.20 0.97 0.90 1.11 0.86 0.99 0.0565
邦玉519 Bangyu 519 0.84 0.65 1.25 0.91 0.72 1.04 0.95 0.44 1.06 0.67 0.92 0.79 1.24 0.0382
德瑞88 Derui 88 1.01 0.59 1.39 1.03 0.56 1.13 1.01 4.21 1.02 1.13 0.94 1.07 0.97 0.0667
登海111 Denghai 111 0.76 0.62 1.19 0.91 0.68 1.12 0.93 1.40 1.09 0.78 1.26 0.71 0.69 0.0250
登海1717 Denghai 1717 0.66 0.39 1.40 0.79 0.49 0.86 0.94 0.84 0.98 0.89 1.06 1.03 0.91 0.0052
登海518 Denghai 518 0.56 0.38 1.35 0.82 0.47 0.72 0.89 1.38 1.02 0.86 0.97 0.88 1.01 0.0846
登海533 Denghai 533 0.99 0.60 1.33 0.88 0.68 1.26 1.01 0.27 0.94 0.92 0.94 0.94 0.90 0.0308
登海605 Denghai 605 0.72 0.49 1.28 0.73 0.64 1.10 0.97 0.77 1.04 0.93 1.13 0.84 0.86 0.0590
登海653 Denghai 653 0.84 0.46 1.49 0.83 0.56 0.98 0.98 0.40 1.01 1.00 0.99 0.87 0.81 0.0189
登海682 Denghai 682 0.88 0.48 1.38 0.90 0.53 1.07 0.98 0.14 0.95 0.71 0.93 1.02 0.91 0.0326
登海710 Denghai 710 0.66 0.47 1.48 0.74 0.62 1.15 0.98 0.44 1.04 1.05 0.97 0.99 0.92 0.0498
迪卡517 Dika 517 0.88 0.46 1.29 0.84 0.53 0.88 0.87 0.79 1.08 0.75 0.89 0.77 0.96 0.0894
丰乐365 Fengle 365 0.82 0.48 1.30 0.87 0.55 0.98 0.94 0.00 1.01 0.94 0.87 0.93 0.98 0.0460
丰乐37 Fengle 37 0.79 0.49 1.79 0.78 0.63 1.04 0.94 0.00 1.01 0.86 0.99 0.89 0.80 0.0393
胶玉1号 Jiaoyu 1 0.80 0.44 1.59 0.91 0.49 0.88 0.97 0.00 0.97 1.20 1.00 0.97 0.82 0.0061
金海2010 Jinhai 2010 0.62 0.41 1.24 0.91 0.44 1.09 0.98 1.02 0.93 0.84 0.98 0.84 0.94 0.1194
京农科736 Jingnongke 736 0.69 0.50 1.25 0.93 0.53 1.11 0.92 0.63 0.95 1.18 0.89 0.91 0.91 0.0108
来玉721 Laiyu 721 0.74 0.42 1.45 0.88 0.47 1.01 0.95 0.46 0.99 1.08 0.99 0.92 0.87 0.0321
鲁单9088 Ludan 9088 0.67 0.55 1.22 0.73 0.74 1.11 0.96 2.11 1.08 0.86 1.11 1.02 0.92 0.0571
明天695 Mingtian 695 0.55 0.32 1.27 0.88 0.37 0.96 0.92 5.50 1.03 0.91 1.04 0.71 0.79 0.1421
农华22 1 Nonghua 221 0.59 0.29 1.47 0.70 0.41 0.75 0.94 0.00 1.06 0.95 0.90 0.95 0.81 0.0214
农华5号 Nonghua 5 0.81 0.52 1.38 0.89 0.57 1.04 1.05 0.52 1.02 0.65 0.91 0.64 0.92 0.0126
强盛339 Qiangsheng 339 1.07 0.64 1.39 0.82 0.77 1.14 1.03 1.38 1.08 1.04 1.00 0.90 0.85 0.0448
天泰316 Tiantai 316 0.67 0.40 1.41 0.85 0.46 0.89 0.93 2.97 1.17 0.89 0.92 0.89 0.76 0.0077
天泰366 Tiantai 366 0.72 0.44 1.40 1.01 0.42 1.09 0.96 7.67 1.12 0.76 1.03 0.67 0.93 0.0505
天泰619 Tiantai 619 0.56 0.40 1.33 0.78 0.51 1.04 0.88 0.27 1.00 1.09 1.07 0.94 1.07 0.0308
万盛69 Wansheng 69 0.66 0.47 1.30 1.02 0.46 1.05 0.93 2.00 1.06 0.76 0.94 0.88 0.87 0.0229
鑫瑞57 Xinrui 57 0.66 0.35 1.49 0.91 0.38 1.10 0.96 0.80 1.07 0.98 1.00 0.90 0.84 0.0222
裕丰620 Yufeng 620 0.46 0.29 1.49 0.94 0.30 0.98 0.76 1.09 1.11 1.08 0.98 0.88 0.79 0.0288
源丰008 Yuanfeng 008 0.45 0.26 1.19 0.98 0.27 0.89 0.87 3.64 0.97 0.77 0.99 0.96 0.82 0.0348
郑原玉432 Zhengyuanyu 432 0.46 0.30 1.30 0.93 0.31 0.94 0.87 2.68 0.99 0.83 1.09 0.88 0.99 0.0074
中天303 Zhongtian 303 0.84 0.54 1.17 0.98 0.55 1.02 0.95 2.37 1.00 0.68 1.05 1.00 0.79 0.0118
平均值 Mean 0.73 0.46 1.35 0.87 0.53 1.01 0.94 1.49 1.02 0.89 0.99 0.89 0.91 0.04
标准差 SD 0.15 0.10 0.13 0.09 0.12 0.11 0.05 1.68 0.06 0.15 0.08 0.10 0.11 0.03
变异系数 CV (%) 20.83 21.69 9.41 9.81 23.01 11.17 5.66 112.81 6.15 16.54 8.31 11.30 12.33 74.90

Table 3

Correlation analysis of relative value of each single index"

指标Index GYD KN TGW SN SR EL ED BTL SLTS TBN TBL TSSD TBSD TPE
GYD 1
KN 0.830** 1
TGW 0.086 -0.150 1
SN 0.030 0.038 -0.209 1
SR 0.741** 0.907** -0.054 -0.377* 1
EL 0.457** 0.609** -0.081 0.183 0.508** 1
ED 0.688** 0.617** 0.147 -0.086 0.594** 0.485** 1
BTL -0.164 -0.173 -0.233 0.387* -0.301 0.032 -0.062 1
SLTS -0.150 -0.042 0.176 0.033 -0.055 -0.051 -0.152 0.284 1
TBN -0.029 -0.107 0.428* -0.082 -0.075 0.094 -0.001 -0.205 0.058 1
TBL -0.230 0.046 -0.196 -0.101 0.103 0.135 -0.057 0.232 0.107 -0.061 1
TSSD 0.008 -0.070 0.100 -0.147 0.007 -0.046 -0.009 -0.251 -0.247 0.364* -0.067 1
TBSD 0.095 0.175 -0.238 -0.133 0.217 -0.002 0.054 -0.003 -0.299 -0.232 -0.147 0.037 1
TPE -0.051 -0.038 -0.212 -0.061 -0.011 0.014 0.009 0.308 0.006 -0.060 0.027 -0.259 0.146 1

Table 4

Eigenvector and contribution rate of principal components of all traits"

主成分Principle factor PI1 PI2 PI3 PI4 PI5 PI6
特征值Eigen value 3.71 2.21 1.65 1.29 1.15 1.02
贡献率Contribution rate (%) 26.53 15.76 11.75 9.24 8.23 7.28
累计贡献率CCR (%) 26.53 42.29 54.04 63.28 71.50 78.78
特征向量Eigenvector 籽粒产量GYD 0.458* -0.019 0.069 -0.183 -0.166 -0.032
穗粒数KN 0.485* 0.111 0.062 -0.002 0.054 -0.106
千粒重TGW -0.009 -0.439* 0.320 0.046 -0.358 0.052
花丝数量SN -0.069 0.282 0.244 -0.676* 0.141 -0.041
结实率SR 0.475* -0.007 -0.042 0.283 0.014 -0.077
穗长EL 0.341* 0.130 0.249 -0.114 0.270 0.210
穗粗ED 0.405* -0.013 0.119 -0.048 -0.116 0.140
秃尖长度BTL -0.140 0.459* 0.228 -0.078 0.007 0.271
雄穗主轴着生小穂长度SLTS -0.102 0.097 0.505* 0.282 -0.235 -0.185
雄穗分枝数量TBN -0.023 -0.415 0.283 -0.032 0.124 0.520*
雄穗分枝长度TBL -0.023 0.201 0.157 0.511 0.588* 0.003
雄穗主轴小穂密度TSSD 0.010 -0.395 -0.164 -0.139 0.447* 0.243
雄穗分枝小穂密度TBSD 0.111 0.123 -0.551* -0.020 -0.124 0.150
雄穗总散粉量TPE -0.023 0.304 -0.095 0.211 -0.321 0.674*

Table 5

Value of each cultivar’s comprehensive index (CI), index weight, U(Xj), D-value, and prediction (VP)"

品种名称Cultivar name CI1 CI2 CI3 CI4 CI5 CI6 U(X1) U(X2) U(X3) U(X4) U(X5) U(X6) D-value VP
C1210 0.295 0.876 -2.837 1.153 0.548 0.286 0.562 0.578 0.000 0.733 0.663 0.503 0.504 0.506
C9256 1.990 0.329 -1.822 -0.692 -0.767 -0.410 0.773 0.494 0.193 0.332 0.366 0.345 0.496 0.494
MC121 -1.024 0.099 -1.775 -0.609 0.935 -0.700 0.398 0.459 0.202 0.350 0.750 0.279 0.400 0.399
MC278 1.205 0.625 -0.434 0.507 0.480 0.422 0.676 0.539 0.456 0.592 0.648 0.534 0.588 0.591
邦玉519
Bangyu 519
2.516 1.641 -1.778 -0.173 -1.269 -1.255 0.839 0.695 0.201 0.445 0.253 0.153 0.543 0.550
德瑞88
Derui 88
2.177 0.227 1.253 -2.221 0.351 2.477 0.797 0.478 0.776 0.000 0.618 1.000 0.637 0.640
登海111 Denghai 111 1.245 2.327 2.169 1.953 2.043 -1.824 0.681 0.800 0.950 0.906 1.000 0.024 0.741 0.738
登海1717 Denghai 1717 -0.979 -1.599 -0.906 0.657 1.012 -0.557 0.403 0.198 0.366 0.625 0.768 0.311 0.410 0.413
登海518 Denghai 518 -2.198 0.058 -1.716 1.012 -1.350 0.465 0.251 0.452 0.213 0.702 0.235 0.543 0.361 0.368
登海533 Denghai 533 3.583 -0.432 -0.001 -1.130 0.589 0.362 0.972 0.377 0.538 0.237 0.672 0.520 0.628 0.626
登海605 Denghai 605 1.119 0.279 0.293 2.370 0.666 0.364 0.665 0.486 0.594 0.997 0.690 0.520 0.643 0.637
登海653 Denghai 653 0.702 -1.502 0.829 0.125 -0.44 -0.351 0.613 0.213 0.696 0.509 0.440 0.358 0.490 0.483
登海682 Denghai 682 1.295 -0.638 -0.990 -1.321 0.166 -0.375 0.687 0.346 0.350 0.195 0.577 0.353 0.468 0.478
登海710 Denghai 710 1.077 -1.698 0.314 1.018 -0.046 1.179 0.660 0.183 0.598 0.703 0.529 0.705 0.548 0.558
迪卡517
Dika 517
-0.391 1.039 -0.871 0.387 -2.392 -0.408 0.477 0.603 0.373 0.566 0.000 0.345 0.433 0.424
丰乐365
Fengle 365
0.592 -0.699 -1.028 -0.792 -0.795 0.123 0.599 0.336 0.343 0.310 0.360 0.466 0.436 0.427
丰乐37
Fengle 37
0.890 -2.202 1.117 1.021 -1.212 -0.328 0.636 0.106 0.750 0.704 0.266 0.363 0.489 0.524
胶玉1号 Jiaoyu 1 -0.172 -2.893 0.981 -0.776 0.184 0.195 0.504 0.000 0.724 0.314 0.581 0.482 0.419 0.416
金海2010
Jinhai 2010
-0.241 1.432 -1.161 -0.360 -0.308 1.965 0.495 0.663 0.318 0.404 0.470 0.884 0.523 0.526
京农科736 Jingnongke 736 0.422 -1.059 -0.171 -1.713 0.857 0.489 0.578 0.281 0.506 0.110 0.733 0.549 0.466 0.456
来玉721
Laiyu 721
-0.285 -1.433 0.450 -0.418 0.186 0.539 0.490 0.224 0.624 0.392 0.581 0.560 0.460 0.456
鲁单9088 Ludan 9088 1.449 0.493 -0.050 2.384 1.416 0.524 0.706 0.519 0.529 1.000 0.859 0.557 0.675 0.677
明天695
Mingtian 695
-2.732 2.870 0.857 0.970 -1.123 2.416 0.185 0.883 0.701 0.693 0.286 0.986 0.543 0.542
农华221 Nonghua 221 -2.359 -2.661 -0.352 1.020 -1.378 -0.667 0.231 0.036 0.472 0.704 0.229 0.286 0.286 0.286
农华5号 Nonghua 5 1.714 0.965 0.201 -0.564 -1.844 -1.929 0.739 0.591 0.576 0.360 0.124 0 0.507 0.507
强盛339 Qiangsheng 339 3.808 -0.408 1.655 0.614 -0.343 0.471 1.000 0.381 0.852 0.616 0.462 0.545 0.709 0.696
天泰316
Tiantai 316
-1.646 -0.458 1.907 0.220 -0.970 -1.245 0.320 0.373 0.900 0.530 0.321 0.155 0.425 0.425
天泰366
Tiantai 366
-0.974 3.631 2.433 -0.593 -1.057 0.185 0.404 1.000 1.000 0.354 0.301 0.480 0.601 0.608
天泰619
Tiantai 619
-0.850 -1.029 -1.076 1.095 1.139 0.679 0.419 0.286 0.334 0.720 0.796 0.592 0.468 0.461
万盛69
Wansheng 69
-0.575 0.993 0.644 -1.560 0.118 -0.948 0.454 0.596 0.661 0.144 0.566 0.223 0.466 0.475
鑫瑞57
Xinrui 57
-1.046 -0.972 1.502 -0.493 0.115 0.073 0.395 0.294 0.823 0.375 0.565 0.454 0.458 0.455
裕丰620 Yufeng 620 -4.216 -1.098 1.585 -0.257 0.106 -0.222 0.000 0.275 0.839 0.426 0.563 0.387 0.323 0.327
源丰008
Yuanfeng 008
-3.930 1.064 -0.663 -1.426 1.225 -0.121 0.036 0.607 0.413 0.173 0.816 0.410 0.338 0.337
郑原玉432 Zhengyuanyu 432 -3.180 0.630 -0.744 -0.355 1.328 -0.577 0.129 0.540 0.397 0.405 0.839 0.307 0.373 0.374
中天303 Zhongtian 303 0.719 1.203 0.186 -1.056 1.829 -1.297 0.615 0.628 0.574 0.253 0.952 0.143 0.560 0.563
权重
Weight (%)
33.67 20.01 14.91 11.73 10.44 9.23

Fig. 3

Dendrogram of clusters for heat tolerance at V12 stage in 35 summer maize cultivars"

Table 6

Correlation between relative value of single index and comprehensive evaluation D-value"

指标Index 相关系数Correlation coefficient PP-value
籽粒产量Grain yield (g plant-1) 0.573 0
穗粒数Kernels per ear 0.784 0
千粒重1000-kernel weight (g) -0.215 0.215
花丝数量Silk number 0.011 0.952
结实率Setting rate (%) 0.731 0
穗长Ear length (cm) 0.751 0
穗粗Ear diameter (mm) 0.607 0
秃尖长度Barren tip length (cm) 0.215 0.215
主轴着生小穂长度The length of spindle with spikelet (cm) 0.118 0.498
雄穗分枝数量Tassel branch number -0.048 0.786
雄穗分枝长度Tassel branch length (cm) 0.457 0.006
雄穗主轴小穂密度Tassel spindle spikelet density (count cm-1) -0.184 0.290
雄穗分枝小穂密度Tassel branch spikelet density (count cm-1) -0.008 0.965
雄穗总散粉量Tassel total pollen emission (g plant-1) 0.231 0.183

Table 7

Grey relational degree between relative value of single index and comprehensive evaluation D-value"

指标Index 关联度Correlational degree 位次Rank
结实率Setting rate (%) 0.917 1
穗长Ear length (cm) 0.915 2
穗粗Ear diameter (mm) 0.905 3
穗粒数Kernels per ear 0.904 4
籽粒产量Grain yield (g plant-1) 0.899 5
雄穗分枝长度Tassel branch length (cm) 0.897 6
雄穗主轴着生小穂长度The length of spindle with spikelet (cm) 0.884 7
雄穗主轴小穂密度Tassel spindle spikelet density (count cm-1) 0.876 8
千粒重1000-kernel weight (g) 0.867 9
雄穗分枝小穂密度Tassel branch spikelet density (count cm-1) 0.852 10
花丝数量Silk number 0.837 11
雄穗分枝数量Tassel branch number 0.811 12
雄穗总散粉量Tassel total pollen emission (g plant-1) 0.770 13
秃尖长度Barren tip length (cm) 0.684 14
[1] 中华人民共和国统计局. 中国统计年鉴. 北京: 中国统计出版社, 2020. pp 383-389.
Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook. Beijing: China Statistics Press, 2020. pp 383-389. (in Chinese)
[2] 李喜贵. 我国玉米供需中长期趋势预测. 中国粮食经济, 2021, (8): 33-36.
Li X G. Long-term trend forecast of corn supply and demand in China. Chin Grain Econ, 2021, (8): 33-36. (in Chinese)
[3] 陈印军, 王琦琪, 向雁. 我国玉米生产地位、优势与自给率分析. 中国农业资源与区划, 2019, 40(1): 7-16.
Chen Y J, Wang Q Q, Xiang Y. Analysis of maize production status, superiority and self-sufficiency in China. Chin J Agric Res Reg Plan, 2019, 40(1): 7-16. (in Chinese with English abstract)
[4] 中国气象局国家气候委员会. 2020年中国气候公报. 2021 [2021-12-23].
National Climate Committee of China Meteorological Administration. China Climate Bulletin 2020. 2021 [2021-12-23]. http://zwgk.cma.gov.cn/zfxxgk/gknr/qxbg/202104/t20210406_3051288.html. (in Chinese)
[5] 中国气象局气候变化中心. 中国气候变化蓝皮书(2021). 北京: 科学出版社, 2021. pp 11-12.
Climate Change Center of China Meteorological Administration. China Blue Book on Climate Change (2021). Beijing: Science Press, 2021. pp 11-12. (in Chinese)
[6] 第三次气候变化国家评估报告编写委员会. 第三次气候变化国家评估报告. 北京: 科学出版社, 2015. pp 10-18.
Preparation Committee for the Third National Assessment Report on Climate Change. The Third National Assessment of Climate Change. Beijing: Science Press, 2015. pp 10-18. (in Chinese)
[7] 贾佳, 胡泽勇. 中国不同等级高温热浪的时空分布特征及趋势. 地球科学进展, 2017, 32: 546-559.
doi: 10.11867/j.issn.1001-8166.2017.05.0546
Jia J, Hu Z Y. Spatial and temporal features and trend of different level heat waves over China. Adv Earth Sci, 2017, 32: 546-559. (in Chinese with English abstract)
doi: 10.11867/j.issn.1001-8166.2017.05.0546
[8] Lau N C, Nath M J. Model simulation and projection of European heat waves in present-day and future climates. J Clim, 2014, 27: 3713-3730.
doi: 10.1175/JCLI-D-13-00284.1
[9] Fischer E M, Knutti R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat Clim Change, 2015, 5: 560-564.
[10] You Q L, Jiang Z H, Kong L, Wu Z W, Bao Y T, Kang S C, Pepin N. A comparison of heat wave climatologies and trends in China based on multiple definitions. Clim Dynam, 2017, 48: 3975-3989.
doi: 10.1007/s00382-016-3315-0
[11] 陆伟婷, 于欢, 曹胜男, 陈长青. 近20年黄淮海地区气候变暖对夏玉米生育进程及产量的影响. 中国农业科学, 2015, 48: 3132-3145.
Lu W T, Yu H, Cao S N, Chen C Q. Effects of climate warming on growth process and yield of summer maize in Huang-Huai- Hai Plain in last 20 years. Sci Agric Sin, 2015, 48: 3132-3145. (in Chinese with English abstract)
[12] 李鸣钰. 未来气候变化对中国玉米产量影响及应对措施研究. 沈阳农业大学硕士学位论文, 辽宁沈阳, 2020.
Li M Y. Effects and Countermeasures of Future Climate Change on Maize Yield in China: Taking Huang-Huai-Hai Plain as an Example. MS Thesis of Shenyang Agricultural University, Shenyang, Liaoning, China, 2020. (in Chinese with English abstract)
[13] 高英波, 张慧, 单晶, 薛艳芳, 钱欣, 代红翠, 刘开昌, 李宗新. 吐丝前高温胁迫对不同耐热型夏玉米产量及穗发育特征的影响. 中国农业科学, 2020, 53: 3954-3963.
Gao Y B, Zhang H, Shan J, Xue Y F, Qian X, Dai H C, Liu K C, Li Z X. Effects of pre-silking high temperature stress on yield and ear development characteristics of different heat-resistant summer maize cultivars. Sci Agric Sin, 2020, 53: 3954-3963. (in Chinese with English abstract)
[14] 张韶昀. 高温胁迫对夏玉米生殖器官发育及产量的影响. 河北农业大学硕士学位论文, 河北保定, 2019.
Zhan S Y. Effects of High Temperature Stress on Reproductive Organ Development and Yield of Summer Maize. MS Thesis of Hebei Agricultural University, Baoding, Hebei, China, 2019. (in Chinese with English abstract)
[15] 穆心愿, 马智艳, 张兰薰, 付景, 刘天学, 丁勇, 夏来坤, 张凤启, 张君, 齐建双, 赵霞, 唐保军. 不同耐/感玉米品种的叶片光合荧光特性、授粉结实和产量构成因素对花期高温的反应. 中国生态农业学报, 2022, 30: 57-71.
Mu X Y, Ma Z Y, Zhang L X, Fu J, Liu T X, Ding Y, Xia L K, Zhang F Q, Zhang J, Qi J S, Zhao X, Tang B J. Responses of the photosynthetic fluorescence characteristics, pollination and yield compositions of different tolerant/susceptible maize varieties to high temperature during flowering. Chin J Eco-Agric, 2022, 30: 57-71. (in Chinese with English abstract)
[16] 赵龙飞, 李潮海, 刘天学, 王秀萍, 僧珊珊. 花期前后高温对不同基因型玉米光合特性及产量和品质的影响. 中国农业科学, 2012, 45: 4947-4958.
Zhao L F, Li C H, Liu T X, Wang X P, Ceng S S. Effect of high temperature during flowering on photosynthetic characteristics and grain yield and quality of different genotypes of maize (Zea mays L.). Sci Agric Sin, 2012, 45: 4947-4958. (in Chinese with English abstract)
[17] 于康珂. 玉米穗发育对高温胁迫的响应. 河南农业大学硕士学位论文, 河南郑州, 2016.
Yu K K. Responses of Reproductive Organs Development in Maize (Zea mays L.) to High Temperature Stress. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2016. (in Chinese with English abstract)
[18] Wang H Q, Liu P, Zhang J W, Zhao B, Ren B Z. Endogenous hormones inhibit differentiation of young ears in maize (Zea mays L.) under heat stress. Front Plant Sci, 2020, 11: 1665-1679.
[19] Wang Y Y, Tao H B, Tian B J, Sheng D C, Xu C C, Zhou H, Huang S B, Wang P. Flowering dynamics, pollen, and pistil contribution to grain yield in response to high temperature during maize flowering. Environ Exp Bot, 2019, 158: 80-88.
doi: 10.1016/j.envexpbot.2018.11.007
[20] 张萍, 陈冠英, 耿鹏, 高雅, 郑雷, 张沙沙, 王璞. 籽粒灌浆期高温对不同耐热型玉米品种强弱势粒发育的影响. 中国农业科学, 2017, 50: 2061-2070.
Zhang P, Chen G Y, Geng P, Gao Y, Zheng L, Zhang S S, Wang P. Effects of high temperature during grain filling period on superior and inferior kernels’ development of different heat sensitive maize varieties. Sci Agric Sin, 2017, 50: 2061-2070. (in Chinese with English abstract)
[21] Huang M X, Wang J, Wang B, Liu D L, Yu Q, He D, Wang N, Pan X B. Optimizing sowing window and cultivar choice can boost China’s maize yield under 1.5°C and 2°C global warming. Environ Res Lett, 2020, 15: 024015.
[22] 王晶, 黄伟雄, 李敏, 许秀敏, 梁旭霞, 黄泓耀. 多元统计分析在小麦粉产地溯源中的应用. 中国食品卫生杂志, 2018, 30(1): 68-73.
Wang J, Huang W X, Li M, Xu X M, Liang X X, Huang H Y. The application of multivariate data analysis to determine the geographical origin of wheat flour. Chin J Food Hyg, 2018, 30(1): 68-73. (in Chinese with English abstract)
[23] 李敏, 苏慧, 李阳阳, 李金鹏, 李金才, 朱玉磊, 宋有洪. 黄淮海麦区小麦耐热性分析及其鉴定指标的筛选. 中国农业科学, 2021, 54: 3381-3393.
Li M, Su H, Li Y Y, Li J P, Li J C, Zhu Y L, Song Y H. Analysis of heat tolerance of wheat with different genotypes and screening of identification indexes in Huang-Huai-Hai region. Sci Agric Sin, 2021, 54: 3381-3393. (in Chinese with English abstract)
[24] 李春红, 姚兴东, 鞠宝韬, 朱明月, 王海英, 张惠君, 敖雪, 于翠梅, 谢甫绨, 宋书宏. 不同基因型大豆耐荫性分析及其鉴定指标的筛选. 中国农业科学, 2014, 47: 2927-2939.
Li C H, Yao X D, Ju B T, Zhu M Y, Wang H Y, Zhang H J, Ao X, Yu C M, Xie F D, Song S H. Analysis of shade-tolerance and determination of shade-tolerance evaluation indicators in different soybean genotypes. Sci Agric Sin, 2014, 47: 2927-2939. (in Chinese with English abstract)
[25] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选. 作物学报, 2022, 48: 367-379.
doi: 10.3724/SP.J.1006.2022.04283
Hu L L, Wang S H, Wang L X, Cheng X Z, Chen H L. Identification of salt tolerance and screening of salt tolerant germplasm of mungbean (Vigna radiate L.) at seedling stage. Acta Agron Sin, 2022, 48: 367-379. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.04283
[26] 于康珂, 刘源, 李亚明, 孙宁宁, 詹静, 尤东玲, 牛丽, 李潮海, 刘天学. 玉米花期耐高温品种的筛选与综合评价. 玉米科学, 2016, 24(2): 62-71.
Yu K K, Liu Y, Li Y M, Sun N N, Zhan J, You D L, Niu L, Li C H, Liu T X. Screening and comprehensive evaluation of heat-tolerance of maize hybrids in flowering stage. J Maize Sci, 2016, 24(2): 62-71. (in Chinese with English abstract)
[27] 李淑君, 张丕辉, 付忠军, 祁志云, 杨华, 金川, 董昕. 玉米花期不同种质资源耐热性鉴定与分析. 玉米科学, 2019, 27(4): 22-31.
Li S J, Zhang P H, Fu Z J, Qi Z Y, Yang H, Jin C, Dong X. Identification and analysis for the thermotolerance of different germplasm in maize at anthesis. J Maize Sci, 2019, 27(4): 22-31. (in Chinese with English abstract)
[28] 高英波, 张慧, 王竹, 薄丽秀, 武智民, 薛艳芳, 钱欣, 代红翠, 韩小伟, 李宗新. 夏玉米品种花期耐热性鉴定与评价. 山东农业科学, 2019, 51(6): 43-48.
Gao Y B, Zhang H, Wang Z, Bao L X, Wu Z M, Xue Y F, Qian X, Dai H C, Han X W, Li Z X. Identification and evaluation of heat tolerance of summer maize varieties during flowering stage. Shandong Agric Sci, 2019, 51(6): 43-48. (in Chinese with English abstract)
[29] 于振文, 王璞, 柴岩, 谢甫绨. 作物栽培学各论. 北京: 中国农业出版社, 2013. pp 73-83.
Yu Z W, Wang P, Chai Y, Xie F D. Monographs on Crop Cultivation. Beijing: China Agriculture Press, 2013. pp 73-83. (in Chinese)
[30] Obata T, Witt S, Lisec J, Palacios R N, Florez S I, Yousfi S. Metabolite profiles of maize leaves in drought, heat, and combined stress field trials reveal the relationship between metabolism and grain yield. Plant Physiol, 2015, 169: 2665-2683.
doi: 10.1104/pp.15.01164 pmid: 26424159
[31] 赵瑞, 张旭辉, 张程炀, 郭泾磊, 汪妤, 李红霞. 小麦种质资源成株期氮效率评价及筛选. 中国农业科学, 2021, 54: 3818-3833.
Zhao R, Zhang X H, Zhang C Y, Guo J L, Wang S, Li H X. Evaluation and screening of nitrogen efficiency of wheat germplasm resources at mature stage. Sci Agric Sin, 2021, 54: 3818-3833. (in Chinese with English abstract)
[32] 关媛, 党冬冬, 王慧, Rani D R, 潘广磊, Paul J D, 阮燕晔, 郑洪建. 甜、糯玉米自交系耐热性鉴定研究. 上海农业学报, 2020, 36(6): 28-32.
Guan Y, Dang D D, Wang H, Rani D R, Pan G L, Paul J D, Ruan Y Y, Zheng H J. Study on the identification of heat tolerance of inbred lines in sweet corn and waxy corn. Acta Agric Shanghai, 2020, 36(6): 28-32. (in Chinese with English abstract)
[33] 杨明花, 廖必勇, 刘强, 登斯拉木, 艾合买提江, 彭云承, 孙娜, 艾拉努尔, 布阿依夏木. 新疆伊犁玉米自交系种质资源主要农艺性状的多样性分析. 种子, 2021, 40(10): 49-55.
Yang M H, Liao B Y, Liu Q, Dengsilamu, Aihemaitijiang, Peng Y C, Sun N, Ailanuer, Buayixiamu. Diversity analysis of main agronomic traits of maize inbred germplasm resources in Yili, Xinjiang. Seed, 2021, 40(10): 49-55 (in Chinese with English abstract).
[34] 张亚菲, 刘松涛, 曹雯梅, 郑贝贝. 黄淮海夏玉米品种主要性状遗传多样性研究. 种子, 2021, 40(4): 96-100.
Zhang Y F, Liu S T, Cao W M, Zheng B B. Study and analysis on genetic diversity of main traits of summer maize in Huang-Huai-Hai Region. Seed, 2021, 40(4): 96-100. (in Chinese with English abstract)
[35] 姚金晓, 杨飞, 彭红坤, 虞梦艳, 严中琪, 王呈阳. 冬瓜幼苗对高温胁迫的响应及其耐热性评价. 江苏农业科学, 2021, 49(13): 121-125.
Yao J X, Yang F, Peng H K, Yu M Y, Yan Z Q, Wang C Y. Response of wax gourd seedlings to high temperature stress and evaluation of heat tolerance. Jiangsu Agric Sci, 2021, 49(13): 121-125. (in Chinese)
[36] 孙宁宁. 玉米叶、粒对高温胁迫的响应. 河南农业大学硕士学位论文, 河南郑州, 2017.
Sun N N. Response of Maize Leaf and Kernel to Heat Stress. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2017. (in Chinese with English abstract)
[37] 武晓玲, 梁海媛, 杨峰, 刘卫国, 佘跃辉, 杨文钰. 大豆苗期耐荫性综合评价及其鉴定指标的筛选. 中国农业科学, 2015, 48: 2497-2507.
Wu X L, Liang H Y, Yang F, Liu W G, She Y H, Yang W Y. Comprehensive evaluation and screening identification indexes of shade tolerance at seedling in soybean. Sci Agric Sin, 2015, 48: 2497-2507. (in Chinese with English abstract)
[38] 杨锦忠, 宋希云. 多元统计分析及其在烟草学中的应用. 中国烟草学报, 2014, 20(5): 134-138.
Yang J Z, Song X Y. Multivariate statistical analysis methods and their application in tobacco science. Acta Tabac Sin, 2014, 20(5): 134-138. (in Chinese with English abstract)
[39] 汪灿, 周棱波, 张国兵, 张立异, 徐燕, 高旭, 姜讷, 邵明波. 薏苡种质资源成株期抗旱性鉴定及抗旱指标筛选. 作物学报, 2017, 43: 1381-1394.
doi: 10.3724/SP.J.1006.2017.01381
Wang C, Zhou L B, Zhang G B, Zhang L Y, Xu Y, Gao X, Jiang N, Shao M B. Identification and indices screening of drought resistance at adult plant stage in Job’s Tears germplasm resources. Acta Agron Sin, 2017, 43: 1381-1394. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.01381
[40] 武辉, 侯丽丽, 周艳飞, 范志超, 石俊毅, 阿丽艳, 肉孜, 张巨松. 不同棉花基因型幼苗耐寒性分析及其鉴定指标筛选. 中国农业科学, 2012, 45: 1703-1713.
Wu H, Hou L L, Zhou Y F, Fan Z C, Shi J Y, Aliyan, Rouzi, Zhang J S. Analysis of chilling-tolerance and determination of chilling-tolerance evaluation indicators in cotton of different genotypes. Sci Agric Sin, 2012, 45: 1703-1713. (in Chinese with English abstract)
[41] 赵鹏, 王晓明, 刘曼双, 许盛宝. 小麦种质资源耐热性评估研究进展. 麦类作物学报, 2021, 41: 569-576.
Zhao P, Wang X M, Liu M S, Xu S B. Research progress on evaluating methods of heat tolerance in wheat germplasm resources. J Triticeae Crops, 2021, 41: 569-576. (in Chinese with English abstract)
[42] 闫振华, 刘东尧, 贾绪存, 杨琴, 陈艺博, 董朋飞, 王群. 花期高温干旱对玉米雄穗发育、生理特性和产量影响. 中国农业科学, 2021, 54: 3592-3608.
Yan Z H, Liu D Y, Jia X C, Yang Q, Chen Y B, Wang P F, Wang Q. Maize tassel development, physiological traits and yield under heat and drought stress during flowering stage. Sci Agric Sin, 2021, 54: 3592-3608. (in Chinese with English abstract)
[43] Wang Y Y, Sheng D C, Zhang P, Dong X, Yan Y, Hou X F, Wang P, Huang S B. High temperature sensitivity of kernel formation in different short periods around silking in maize. Environ Exp Bot, 2021, 183: 104343.
[44] 付景, 孙宁宁, 刘天学, 马俊峰, 杨豫龙, 赵霞, 穆心愿, 李潮海. 穗期高温对玉米子粒灌浆生理及产量的影响. 作物杂志, 2019, (3): 118-125.
Fu J, Sun N N, Liu T X, Ma J F, Yang Y L, Zhao X, Mu X Y, Li C H. The effects of high temperature at spike stage on grain-filling physiology and yield of maize. Crops, 2019, (3): 118-125. (in Chinese with English abstract)
[45] 周延辉, 朱新开, 郭文善, 封超年. 稻茬小麦中高产水平下产量及其构成因素分析. 麦类作物学报, 2018, 38: 293-297.
Zhou Y H, Zhu X K, Guo W S, Feng C N. Analysis of yield and yield components of wheat after rice on medium-high-yielding level. J Triticeae Crops, 2018, 38: 293-297. (in Chinese with English abstract)
[1] SHANG Meng-Fei, SHI Xiao-Yu, ZHAO Jiong-Chao, LI Shuo, CHU Qing-Quan. Spatiotemporal variation of high temperature stress in different regions of China under climate change [J]. Acta Agronomica Sinica, 2023, 49(1): 167-176.
[2] ZHANG Zhen-Bo, QU Xin-Yue, YU Ning-Ning, REN Bai-Zhao, LIU Peng, ZHAO Bin, ZHANG Ji-Wang. Effects of nitrogen application rate on grain filling characteristics and endogenous hormones in summer maize [J]. Acta Agronomica Sinica, 2022, 48(9): 2366-2376.
[3] PEI Li-Zhen, CHEN Yuan-Xue, ZHANG Wen-Wen, XIAO Hua, ZHANG Sen, ZHOU Yuan, XU Kai-Wei. Effects of organic material returned on photosynthetic performance and nitrogen metabolism of ear leaf in summer maize [J]. Acta Agronomica Sinica, 2022, 48(8): 2115-2124.
[4] ZHU Ling-Xiao, SONG Shi-Jia, LI Hao-Ran, SUN Hong-Chun, ZHANG Yong-Jiang, BAI Zhi-Ying, ZHANG Ke, LI An-Chang, LIU Lian-Tao, LI Cun-Dong. Screening of low nitrogen tolerant cultivars based on low nitrogen tolerance comprehensive index at seeding stage in cotton [J]. Acta Agronomica Sinica, 2022, 48(7): 1800-1812.
[5] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[6] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[7] HU Liang-Liang, WANG Su-Hua, WANG Li-Xia, CHENG Xu-Zhen, CHEN Hong-Lin. Identification of salt tolerance and screening of salt tolerant germplasm of mungbean (Vigna radiate L.) at seedling stage [J]. Acta Agronomica Sinica, 2022, 48(2): 367-379.
[8] SONG Jie, REN Hao, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LI Liang, WANG Shao-Xiang, HUANG Jin-Ling, LIU Peng. Effect of potassium application on vascular tissue structure and material transport properties in summer maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2022, 48(11): 2908-2919.
[9] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[10] SONG Li-Jun, NIE Xiao-Yu, HE Lei-Lei, KUAI Jie, YANG Hua, GUO An-Guo, HUANG Jun-Sheng, FU Ting-Dong, WANG Bo, ZHOU Guang-Sheng. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1741-1752.
[11] ZHANG He, JIANG Chun-Ji, YIN Dong-Mei, DONG Jia-Le, REN Jing-Yao, ZHAO Xin-Hua, ZHONG Chao, WANG Xiao-Guang, YU Hai-Qiu. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1753-1767.
[12] LI Jing, WANG Hong-Zhang, LIU Peng, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao. Differences in photosynthetic performance of leaves at post-flowering stage in different cultivation modes of summer maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1351-1359.
[13] XU Tian-Jun, LYU Tian-Fang, ZHAO Jiu-Ran, WANG Rong-Huan, ZHANG Yong, CAI Wan-Tao, LIU Yue-E, LIU Xiu-Zhi, CHEN Chuan-Yong, XING Jin-Feng, WANG Yuan-Dong, LIU Chun-Ge. Grain filling characteristics of summer maize varieties under different sowing dates in the Huang-Huai-Hai region [J]. Acta Agronomica Sinica, 2021, 47(3): 566-574.
[14] ZHOU Bao-Yuan, GE Jun-Zhu, SUN Xue-Fang, HAN Yu-Ling, MA Wei, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Research advance on optimizing annual distribution of solar and heat resources for double cropping system in the Yellow-Huaihe-Haihe Rivers plain [J]. Acta Agronomica Sinica, 2021, 47(10): 1843-1853.
[15] Zhen-Yu LIU,Gui-Xia WANG,Li-Nan LI,Ze-Zhou CAI,Pan-Pan LIANG,Xin-Ling WU,Xiang ZHANG,De-Hua CHEN. Recovery characteristics of Bt insecticidal protein and relative physiological mechanisms after high temperature stress termination in square of Bt cotton [J]. Acta Agronomica Sinica, 2020, 46(3): 440-447.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .