Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (10): 2643-2653.doi: 10.3724/SP.J.1006.2023.34009

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification of potato amylase StBAM9 interacting protein and analysis of the interaction mechanism

DU Juan1(), PENG Xiao-Jun1,2, HOU Juan1,3, LIU Teng-Fei1,4, LIU Zeng1, SONG Bo-Tao1()   

  1. 1National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops / Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs / Huazhong Agricultural University, Wuhan 430070, Hubei, China
    2People's Government of Baren Township, Aktau County, Kizilsu Kirgiz Autonomous Prefecture 845555, Xinjiang, China
    3College of Horticulture, Henan Agricultural University, Zhengzhou 450002, Henan, China
    4College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China
  • Received:2023-01-13 Accepted:2023-04-17 Online:2023-10-12 Published:2023-04-26
  • Contact: E-mail: songbotao@mail.hzau.edu.cn
  • Supported by:
    Guizhou Science and Technology Support Plan (the Key Project in Agricultural Field) Biological Breeding Pilot Project (Qiankehe Support [2022] Key 030-3);National Natural Science Foundation of China(31671749)

Abstract:

Previous research conducted in our laboratory has demonstrated the crucial role of StBAM9 (β-Amylase 9) in the resistance of potatoes to cold-induced sweetening (CIS), although StBAM9 lacks β-Amylase activity. To investigate the mechanism, we generated a yeast two-hybrid library of tuber cDNA following low-temperature storage and screened for potential interacting proteins with StBAM9 as bait. The results revealed that 12 of the identified interacting proteins were common among both full-length and truncated transport peptide StBAM9 bait screens. Among them, four proteins (StDUF842, StTPR01660, StTPR22129, and StTPR45174) had significant interactions with StBAM9 in yeast two-hybrid assay. Subsequently, two of these proteins, StTPR01660 and StTPR4517, were identified as the interactors with StBAM9 through Glutathione-S-transferase (GST) pull-down experiments. Bimolecular fluorescence complementation (BiFC) assays demonstrated that only StTPR01660 was co-localized with StBAM9 on starch granules, while StTPR01660 itself was observed in the cytoplasm. In conclusion, StBAM9 may recruit StTPR01660 from the cytoplasm to starch granules, potentially enabling starch degradation.

Key words: potato, cold-induced sweetening (CIS), starch degradation, β-amylase, protein interaction

Table S1

Primers used in this study"

引物名称
Primer name
引物序列
Primer sequence (5°-3°)
用途
Use
5°-T7 TAATACGACTCACTATAGG 酵母文库构建
Yeast library construction
3°-AD ACTGTGCATCGTGCACCATCTC 酵母文库构建
Yeast library construction
AD-StDUF842-F CCATGGAGGCCAGTGAATTCATGGACGCAATAGCAGCAGC 酵母双杂交Y2H
AD-StDUF842-R AGCTCGAGCTCGATGGATCCTCAATTGTTGAAGCCGAGAG 酵母双杂交Y2H
AD-StTPR01660-F CCATGGAGGCCAGTGAATTCATGTTATTGAGAAGCTCATC 酵母双杂交Y2H
AD-StTPR01660-R AGCTCGAGCTCGATGGATCCCTAAGAAGCAGCAGCCAAGG 酵母双杂交Y2H
AD-StTPR22129-F CCATGGAGGCCAGTGAATTCATGTTGCTAAGGAGTTCTTC 酵母双杂交Y2H
AD-StTPR22129-R AGCTCGAGCTCGATGGATCCTCAAACAGTTATAGAAGCCG 酵母双杂交Y2H
AD-StTPR45174-F CCATGGAGGCCAGTGAATTCATGAGAACTGTCCTTTTCCG 酵母双杂交Y2H
AD-StTPR45174-R AGCTCGAGCTCGATGGATCCCTAGTAAGCTGCAACCGTTG 酵母双杂交Y2H
AD-StSTPK69936-F CCATGGAGGCCAGTGAATTCATGGAGGTAATAGAGAAGGA 酵母双杂交Y2H
AD-StSTPK69936-R AGCTCGAGCTCGATGGATCCTCAAGTTGGTGATTCAGCTA 酵母双杂交Y2H
AD-StSTPK63153-F CCATGGAGGCCAGTGAATTCATGAGTTCCAGAGGTGGTGG 酵母双杂交Y2H
AD-StSTPK63153-R AGCTCGAGCTCGATGGATCCTCATTGTGGTCCCTCTAGCT 酵母双杂交Y2H
AD-StSTPK61170-F CCATGGAGGCCAGTGAATTCATGGAGAAATACGAGCTTGT 酵母双杂交Y2H
AD-StSTPK61170-R AGCTCGAGCTCGATGGATCCTTAGGTGAGACGAACTTCCC 酵母双杂交Y2H
AD-StPP2C-F CCATGGAGGCCAGTGAATTCATGGAAGAAAGTAAAATGAT 酵母双杂交Y2H
AD-StPP2C-R AGCTCGAGCTCGATGGATCCTTAATCTTTCAAGGTATCCA 酵母双杂交Y2H
AD-StGAPDH-F CCATGGAGGCCAGTGAATTCATGGCCAATGGCAAGATCAA 酵母双杂交Y2H
AD-StGAPDH-R AGCTCGAGCTCGATGGATCCTCAAGCCTTGGCCATATGGC 酵母双杂交Y2H
AD-StSHSP12249-F CCATGGAGGCCAGTGAATTCATGGCAACTTCACTTGCTCT 酵母双杂交Y2H
AD-StSHSP12249-R AGCTCGAGCTCGATGGATCCTCACTCAATTTTAACATCAA 酵母双杂交Y2H
AD-StSHSP78006-F CCATGGAGGCCAGTGAATTCATGTCACTGATCCCAAGAAT 酵母双杂交Y2H
AD-StSHSP78006-R AGCTCGAGCTCGATGGATCCTTAACCAGAGATCTCAATGG 酵母双杂交Y2H
AD-StAFTP4-F CCATGGAGGCCAGTGAATTCATGAAGCAAAAGGTTGTTAT 酵母双杂交Y2H
AD-StAFTP4-R AGCTCGAGCTCGATGGATCCTCACATAATGGAGCAATTGG 酵母双杂交Y2H
AD-StSSIV-F CCATGGAGGCCAGTGAATTCATGGAGATGAAGATCTCCAA 酵母双杂交Y2H
AD-StSSIV-R AGCTCGAGCTCGATGGATCCTCAACTACGACTTGCAGCTC 酵母双杂交Y2H
AD-StGWD-F CCATGGAGGCCAGTGAATTCATGAGTAATTCCTTAGGGAA 酵母双杂交Y2H
AD-StGWD-R AGCTCGAGCTCGATGGATCCTCACATCTGAGGTCTTGTCT 酵母双杂交Y2H
StTPR01660-A1-180-F CCATGGAGGCCAGTGAATTCATGTTATTGAGAAGCTCATC 酵母双杂交Y2H
StTPR01660-A1-180-R AGCTCGAGCTCGATGGATCCCTATTTCTGGTAATAGGCAT 酵母双杂交Y2H
StTPR01660-A181-262-F CCATGGAGGCCAGTGAATTCATGATCGAAGCCCACCCAGG 酵母双杂交Y2H
StTPR01660-A181-262-R AGCTCGAGCTCGATGGATCCCTACAGTACGTAGCAGTCAT 酵母双杂交Y2H
StTPR01660-A263-317-F CCATGGAGGCCAGTGAATTCATGGGCTCTTATGCTCGATT 酵母双杂交Y2H
StTPR01660-A263-317-R AGCTCGAGCTCGATGGATCCCTAAGAAGCAGCAGCCAAGG 酵母双杂交Y2H
StTPR01660-A181-277-F CCATGGAGGCCAGTGAATTCATGATCGAAGCCCACCCAGG 酵母双杂交Y2H
StTPR01660-A181-277-R AGCTCGAGCTCGATGGATCCCTACTCATATTCTTCACCAG 酵母双杂交Y2H
StTPR01660-A278-317-F CCATGGAGGCCAGTGAATTCATGAATGAGGGTGAGGACGA 酵母双杂交Y2H
StTPR01660-A278-317-R AGCTCGAGCTCGATGGATCCCTAAGAAGCAGCAGCCAAGG 酵母双杂交Y2H
StTPR01660-A181-317-F CCATGGAGGCCAGTGAATTCATGATCGAAGCCCACCCAGG 酵母双杂交Y2H
StTPR01660-A181-317-R AGCTCGAGCTCGATGGATCCCTAAGAAGCAGCAGCCAAGG 酵母双杂交Y2H
pET32a-StDUF842-F CTGATATCGGATCCGAATTCATGGACGCAATAGCAGCAGC 原核表达
Prokaryotic expression
pET32a-StDUF842-R TGGTGGTGGTGGTGCTCGAGTCAATTGTTGAAGCCGAGAG 原核表达
Prokaryotic expression
pET32a-StTPR01660-F CTGATATCGGATCCGAATTCATGTTATTGAGAAGCTCATC 原核表达
Prokaryotic expression
pET32a-StTPR01660-R TGGTGGTGGTGGTGCTCGAGCTAAGAAGCAGCAGCCAAGG 原核表达
Prokaryotic expression
pET32a-StTPR22129-F CTGATATCGGATCCGAATTCATGTTGCTAAGGAGTTCTTC 原核表达
Prokaryotic expression
pET32a-StTPR22129-R TGGTGGTGGTGGTGCTCGAGTCAAACAGTTATAGAAGCCG 原核表达
Prokaryotic expression
pET32a-StTPR45174-F CTGATATCGGATCCGAATTCATGAGAACTGTCCTTTTCCG 原核表达
Prokaryotic expression
pET32a-StTPR45174-R TGGTGGTGGTGGTGCTCGAGCTAGTAAGCTGCAACCGTTG 原核表达
Prokaryotic expression
pGEX6p-1-StDUF842-F TCCAGGGGCCCCTGGGATCCATGGACGCAATAGCAGCAGC 原核表达
Prokaryotic expression
pGEX6p-1-StDUF842-R ATGCGGCCGCTCGAGTCGACTCAATTGTTGAAGCCGAGAG 原核表达
Prokaryotic expression
StDUF842-YFPN-F TGTTGATACATATGGGATCCATGGACGCAATAGCAGCAGC 双分子荧光互补BiFC
StDUF842-YFPN-R CCGAATTCACTAGTGTCGACATTGTTGAAGCCGAGAGAAG 双分子荧光互补BiFC
StTPR22129-YFPN-F TGTTGATACATATGGGATCCATGTTGCTAAGGAGTTCTTC 双分子荧光互补BiFC
StTPR22129-YFPN-R CCGAATTCACTAGTGTCGACAACAGTTATAGAAGCCGTGG 双分子荧光互补BiFC
actin-F CAGAAAGGACCTCTACGGTAACATT cDNA检测cDNA detection
actin-R TCTGTGGACGATGGACGGAC cDNA检测cDNA detection
attB1+StDUF842-F GGGGACAAGTTTGTACAAAAAAGCAGGCTCAATGGACGCAATAGCAGCAGC BP反应BP reaction
attB2+StDUF842-R GGGGACCACTTTGTACAAGAAAGCTGGGTATCAATTGTTGAAGCCGAGAG BP反应BP reaction
attB1+StTPR01660-F GGGGACAAGTTTGTACAAAAAAGCAGGCTCAATGTTATTGAGAAGCTCATC BP反应BP reaction
attB2+StTPR01660-R GGGGACCACTTTGTACAAGAAAGCTGGGTACTAAGAAGCAGCAGCCAAGG BP反应BP reaction
attB1+StTPR22129-F GGGGACAAGTTTGTACAAAAAAGCAGGCTCAATGTTGCTAAGGAGTTCTTC BP反应BP reaction
attB2+StTPR22129-R GGGGACCACTTTGTACAAGAAAGCTGGGTATCAAACAGTTATAGAAGCCG BP反应BP reaction
attB1+StTPR45174-F GGGGACAAGTTTGTACAAAAAAGCAGGCTCAATGAGAACTGTCCTTTTCCG BP反应BP reaction
attB2+StTPR45174-R GGGGACCACTTTGTACAAGAAAGCTGGGTACTAGTAAGCTGCAACCGTTG BP反应BP reaction

Fig. 1

Titer and inserted fragment detection of yeast cDNA Library A: titer and inserted fragment detection of the entry cDNA library by colony PCR; B: titer and inserted fragment detection of the expression cDNA library by colony PCR."

Table 1

Yeast library screening results by using StBAM9 or StBAM9-P as a bait"

饵蛋白
Bait protein
测序转化子数
Number of sequencing
transformers
潜在互作蛋白个数
Number of potential interaction proteins
相同潜在互作蛋白个数
Number of proteins with the same potential interaction
StBAM9 68 29 12
StBAM9-P 118 75

Fig. 2

WEGO analysis of potential interacting proteins of StBAM9 or StBAM9-P Red and gray columns show the analysis of StBAM9 and StBAM9-P, respectively."

Table 2

Basic information of 12 candidate interacting proteins of StBAM9"

序号
Serial number
基因名称
Gene name
PGSC编号
PGSC number
注释
Annotation
CDS
(bp)
1 StDUF842 PGSC0003DMT400042117 含DUF842结构域的蛋白质
DUF842 domain containing protein
450
2 StTPR01660 PGSC0003DMT400001660 含四肽重复结构域的蛋白
Tetratricopeptide repeat domain-containing protein
951
3 StTPR22129 PGSC0003DMT400022129 含四肽重复结构域的蛋白
Tetratricopeptide repeat domain-containing protein
1083
4 StTPR45174 PGSC0003DMT400045174 含四肽重复结构域的蛋白
Tetratricopeptide repeat domain-containing protein
909
5 StSHSP12249 PGSC0003DMT400012249 线粒体小分子热休克蛋白
Mitochondrial small heat shock protein
636
6 StSHSP78006 PGSC0003DMT400078006 17.6 kD I类热休克蛋白
17.6 kD class I heat shock protein
465
7 StGAPDH PGSC0003DMT400044944 胞质甘油醛-3-磷酸脱氢酶
Glyceraldehyde-3-phosphate dehydrogenase, cytosolic
1017
8 StAFTP4 PGSC0003DMT400044590 金属离子结合蛋白
Metal ion binding protein
396
9 StSTPK61170 PGSC0003DMT400061170 渗透应激激活蛋白激酶
Osmotic stress-activated protein kinase
1083
10 StSTPK63153 PGSC0003DMT400063153 丝氨酸/苏氨酸蛋白激酶
Ser/Thr protein kinase
1515
11 StSTPK69936 PGSC0003DMT400069936 丝氨酸/苏氨酸蛋白激酶
NEK8Serine/threonine-protein kinase Nek8
1425
12 StPP2C PGSC0003DMT400067098 蛋白磷酸酶
2CProtein phosphatase 2C
1128

Fig. 3

Interaction validation of StBAM9 and 12 candidate interaction proteins by yeast two hybrid"

Fig. 4

In vitro interaction validation of StBAM9 with StTPR01660 and StTPR45174"

Fig. 5

StBAM9 interacts with StTPR01660 on starch granules Bar: 25 μm."

Fig. 6

StTPR01660 is located in the cytoplasm Bar: 25 μm."

Fig. 7

Validation of yeast two hybrid interaction between the TPR domain of StTPR01660 and StBAM9"

[1] Shepherd L V T, Bradshaw J E, Dale M F B, McNicol J W, Pont S D A, Mottram D S, Davies H V. Variation in acrylamide producing potential in potato: segregation of the trait in a breeding population. Food Chem, 2010, 123: 568-573.
doi: 10.1016/j.foodchem.2010.04.070
[2] Hogervorst J G, Schouten L J, Konings E J, Goldbohm R A, van den Brandt P A. A prospective study of dietary acrylamide intake and the risk of endometrial, ovarian, and breast cancer. Cancer Epidem Biomar, 2007, 16: 2304-2313.
doi: 10.1158/1055-9965.EPI-07-0581 pmid: 18006919
[3] Scheidig A, Frohlich A, Schulze S, Lloyd J R, Kossmann J. Downregulation of a chloroplast-targeted beta-amylase leads to a starch-excess phenotype in leaves. Plant J, 2002, 30: 581-591.
doi: 10.1046/j.1365-313x.2002.01317.x pmid: 12047632
[4] Fulton D C, Stettler M, Mettler T, Vaughan C K, Li J, Francisco P, Gil M, Reinhold H, Eicke S, Messerli G, Dorken G, Halliday K, Smith A M, Smith S M, Zeeman S C. Beta-AMYLASE4, a noncatalytic protein required for starch breakdown, acts upstream of three active beta-amylases in Arabidopsis chloroplasts. Plant Cell, 2008, 20: 1040-1058.
doi: 10.1105/tpc.107.056507
[5] Reinhold H, Soyk S, Simková K, Hostettler C, Marafino J, Mainiero S, Vaughan C K, Monroe J D, Zeeman S C. Beta-amylase-like proteins function as transcription factors in Arabidopsis, controlling shoot growth and development. Plant Cell, 2011, 23: 1391-1403.
doi: 10.1105/tpc.110.081950
[6] Hou J, Zhang H L, Liu J, Reid S, Liu T F, Xu S J, Tian Z D, Sonnewald U, Song B T, Xie C H. Amylases StAmy23, StBAM1 and StBAM9 regulate cold-induced sweetening of potato tubers in distinct ways. J Exp Bot, 2017, 68: 2317-2331.
doi: 10.1093/jxb/erx076 pmid: 28369567
[7] Smith S M, Fulton D C, Chia T, Thorneycroft D, Chapple A, Dunstan H, Hylton C, Zeeman S C, Smith A M. Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and posttranscriptional regulation of starch metabolism in Arabidopsis leaves. Plant Physiol, 2004, 136: 2687-2699.
doi: 10.1104/pp.104.044347
[8] Zhang H L, Hou J, Liu J, Xie C H, Song B T. Amylase analysis in potato starch degradation during cold storage and sprouting. Potato Res, 2014, 57: 47-58.
doi: 10.1007/s11540-014-9252-6
[9] Zhang H L, Liu J, Hou J, Yao Y, Lin Y, Ou Y B, Song B T, Xie C H. The potato amylase inhibitor gene SbAI regulates cold-induced sweetening in potato tubers by modulating amylase activity. Plant Biotechnol J, 2014, 12: 984-993.
doi: 10.1111/pbi.2014.12.issue-7
[10] Du J, Rietman H, Vleeshouwers V G. Agroinfiltration and PVX agroinfection in potato and Nicotiana benthamiana. J Vis Exp, 2014, 83: e50971.
[11] 侯娟. 马铃薯低温糖化相关淀粉酶基因的功能鉴定及机制解析. 华中农业大学博士学位论文, 湖北武汉, 2017.
Hou J. Function Characterization and Mechanism Dissection of the Amylase Genes Related to Cold-induced Sweetening in Potato. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2017. (in Chinese with English abstract)
[12] Amit K D, Patricia T W C, David B. The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein-protein interactions. EMBO J, 1998, 17: 1192-1199.
doi: 10.1093/emboj/17.5.1192 pmid: 9482716
[13] Blatch G L, Lässle M. The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. BioEssays, 1999, 21: 932-939.
pmid: 10517866
[14] She K C, Kusano H, Koizumi K, Yamakawa H, Hakata M, Imamura T, Fukuda M, Naito N, Tsurumaki Y, Yaeshima M, Tsuge T, Matsumoto K, Kudoh M, Itoh E, Kikuchi S, Kishimoto N, Yazaki J, Ando T, Yano M, Aoyama T, Sasaki T, Satoh H, Shimada H. A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality. Plant Cell, 2010, 22: 3280-3294.
doi: 10.1105/tpc.109.070821
[15] Wu Y P, Pu C H, Lin H Y, Huang H Y, Huang Y C, Hong C Y, Chang M C, Lin Y R. Three novel alleles of FLOURY ENDOSPERM2 (FLO2) confer dull grains with low amylose content in rice. Plant Sci, 2015, 233: 44-52.
doi: 10.1016/j.plantsci.2014.12.011
[16] Gámez-Arjona F M, Raynaud S, Ragel P, Mérida Á. Starch synthase 4 is located in the thylakoid membrane and interacts with plastoglobule-associated proteins in Arabidopsis. Plant J, 2014, 80: 305-316.
doi: 10.1111/tpj.12633
[17] Hussain H, Mant A, Seale R, Zeeman S, Hinchliffe E, Edwards A, Hylton C, Bornemann S, Smith A M, Martin C, Bustos R. Three isoforms of isoamylase contribute different catalytic properties for the debranching of potato glucans. Plant Cell, 2002, 15: 133-149.
doi: 10.1105/tpc.006635
[1] LIU Jie, CAI Cheng-Cheng, LIU Shi-Feng, DENG Meng-Sheng, WANG Xue-Feng, WEN He, LI Luo-Pin, YAN Feng-Jun, WANG Xi-Yao. Function analysis of potato StCYP85A3 in promoting germination and root elongation [J]. Acta Agronomica Sinica, 2023, 49(9): 2462-2471.
[2] YU Quan-Xin, YANG Zong-Tao, ZHANG Hai, CHENG Guang-Yuan, ZHOU Ying-Shuan, JIAO Wen-Di, ZENG Kang, LUO Ting-Xu, HUANG Guo-Qiang, ZHANG Mu-Qing, XU Jing-Sheng. Interaction of sugarcane VAMP associated protein ScPVA12 with SCMV P3N-PIPO [J]. Acta Agronomica Sinica, 2023, 49(9): 2472-2484.
[3] YANG Yi, HE Zhi-Qiang, LIN Jia-Hui, LI Yang, CHEN Fei, LYU Chang-Wen, TANG Dao-Bin, ZHOU Quan-Lu, WANG Ji-Chun. Effects of coconut bran application rate on soil physicochemical properties and sweet-potato yield [J]. Acta Agronomica Sinica, 2023, 49(9): 2517-2527.
[4] SU Yi-Jun, ZHAO Lu-Kuan, TANG Fen, DAI Xi-Bin, SUN Ya-Wei, ZHOU Zhi-Lin, LIU Ya-Ju, CAO Qing-He. Genetic diversity and population structure analysis of 378 introduced sweetpotato germplasm collections [J]. Acta Agronomica Sinica, 2023, 49(9): 2582-2593.
[5] JIA Rui-Xue, CHEN Yi-Hang, ZHANG Rong, TANG Chao-Chen, WANG Zhang-Ying. Simultaneous determination of 13 carotenoids in sweetpotato by Ultra- Performance Liquid Chromatography [J]. Acta Agronomica Sinica, 2023, 49(8): 2259-2274.
[6] ZHAO Xi-Juan, LIU Sheng-Xuan, LIU Teng-Fei, ZHENG Jie, DU Juan, HU Xin-Xi, SONG Bo-Tao, HE Chang-Zheng. Transcriptome analysis reveals the regulatory role of the transcription factor StMYB113 in light-induced chlorophyll synthesis of potato tuber epidermis [J]. Acta Agronomica Sinica, 2023, 49(7): 1860-1870.
[7] WANG Yan-Nan, CHEN Jin-Jin, BIAN Qian-Qian, HU Lin-Lin, ZHANG Li, YIN Yu-Meng, QIAO Shou-Chen, CAO Guo-Zheng, KANG Zhi-He, ZHAO Guo-Rui, YANG Guo-Hong, YANG Yu-Feng. Integrated analysis of transcriptome and metabolome reveals the metabolic response pathways of sweetpotato under shade stress [J]. Acta Agronomica Sinica, 2023, 49(7): 1785-1798.
[8] SUO Hai-Cui, LIU Ji-Tao, WANG Li, LI Cheng-Chen, SHAN Jian-Wei, LI Xiao-Bo. Functional analysis of StZIP12 in regulating potato Zn uptake [J]. Acta Agronomica Sinica, 2023, 49(7): 1994-2001.
[9] MEI Yu-Qin, LIU Yi, WANG Chong, LEI Jian, ZHU Guo-Peng, YANG Xin-Sun. Genome-wide identification and expression analysis of PHB gene family in sweet potato [J]. Acta Agronomica Sinica, 2023, 49(6): 1715-1725.
[10] ZHANG Xiao-Hong, PENG Qiong, YAN Zheng. Transcriptome sequencing analysis of different sweet potato varieties under salt stress [J]. Acta Agronomica Sinica, 2023, 49(5): 1432-1444.
[11] CHEN Yi-Hang, TANG Chao-Chen, ZHANG Xiong-Jian, YAO Zhu-Fang, JIANG Bing-Zhi, WANG Zhang-Ying. Construction of core collection of sweetpotato based on phenotypic traits and SSR markers [J]. Acta Agronomica Sinica, 2023, 49(5): 1249-1261.
[12] WU Shi-Yu, CHEN Kuang-Ji, LYU Zun-Fu, XU Xi-Ming, PANG Lin-Jiang, LU Guo-Quan. Effects of nitrogen fertilizer application rate on starch contents and properties during storage root expansion in sweetpotato [J]. Acta Agronomica Sinica, 2023, 49(4): 1090-1101.
[13] WANG Shuo, BAO Tian-Yang, LIU Jian-Gang, DUAN Shao-Guang, JIAN Yin-Qiao, LI Guang-Cun, JIN Li-Ping, XU Jian-Fei. Potato tuber greening evaluation based on RGB color space [J]. Acta Agronomica Sinica, 2023, 49(4): 1102-1110.
[14] BAI Cheng-Cheng, YAO Xiao-Yao, WANG Yu-Lu, WANG Sai-Yu, LI Jin-Ying, JIANG You-Wei, JIN Shu-Rong, CHEN Chun-Jie, LIU Yu, WEI Xing-Yue, XU Xin-Fu, LI Jia-Na, NI Yu. Cloning of genes involved in cuticular very-long-chain alkane synthesis and its interaction with BnCER1-2 in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(4): 1016-1027.
[15] LIU Ming, FAN Wen-Jing, ZHAO Peng, JIN Rong, ZHANG Qiang-Qiang, ZHU Xiao-Ya, WANG Jing, LI Qiang. Genotypes screening and comprehensive evaluation of sweetpotato tolerant to low potassium stress at seedling stage [J]. Acta Agronomica Sinica, 2023, 49(4): 926-937.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .