Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (10): 2665-2676.doi: 10.3724/SP.J.1006.2023.34020

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Interaction of sugarcane glutathione S-transferase ScGSTF1 with P3N-PIPO in response to SCMV infection

YANG Zong-Tao(), JIAO Wen-Di, ZHANG Hai, ZHANG Ke-Ming, CHENG Guang-Yuan, LUO Ting-Xu, ZENG Kang, ZHOU Ying-Shuan, XU Jing-Sheng()   

  1. Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University / National Engineering Research Center for Sugarcane, Fuzhou 350002, Fujian, China
  • Received:2023-01-30 Accepted:2023-04-17 Online:2023-10-12 Published:2023-04-27
  • Contact: E-mail: xujingsheng@126.com
  • Supported by:
    National Natural Science Foundation of China(31971991);Science and Technology Innovation Project of Fujian Agriculture and Forestry University(CXZX2019132G);Open Project of Guangxi Key Laboratory of Sugarcane Biology(GXKLSCB-202003)

Abstract:

The Glutathione S-transferases (GSTs) are widely distributed in cellular organisms and participate in the regulation of growth and development, detoxification of xenobiotics, and response to stress in plants. In the present study, we screened a sugarcane (Saccharum spp. hybrid) cDNA library and obtained a GST gene from sugarcane original cultivar Badila using Sugarcane mosaic virus (SCMV)-encoded protein P3N-PIPO as bait. The open reading frame (ORF) of the cloned GST gene was 645 bp in length, encoding a protein with 214 amino acids. Sequence alignment and phylogenetic tree showed that this GST belonged to the Phi (F) class (GSTF) designated as ScGSTF1 in GST family. Further bioinformatics revealed that ScGSTF1 protein was a stable hydrophilic lipoprotein without transmembrane domain. Phylogenetic tree demonstrated that ScGSTF1 was divergent between monocotyledons and dicotyledonous, as well as in C3 and C4 plants. Yeast two-hybrid (Y2H) and biomolecular fluorescence complementation (BiFC) assays confirmed the interaction of ScGSTF1 with SCMV-P3N-PIPO. Subcellular localization assays indicated that ScGSTF1 was localized in the endoplasmic reticulum. The qRT-PCR analysis showed that ScGSTF1 gene was significantly differently expressed in different tissues of sugarcane plants with the highest expression level in the 3rd internode and the lowest expression level in leaf roll or roots. SCMV infection affected the relative expression level of ScGSTF1 gene, which was up-regulated at the early stage of infection and down-regulated later, but still maintained a significantly higher level than the control.

Key words: sugarcane, Sugarcane mosaic virus, glutathione S-transferase, P3N-PIPO, protein interaction

Table 1

Primers used in this study"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
策略
Strategy
pPR3-ScGSTF1-F GCAGAGTGGCCATTACGATGGCCGGCGGTGGCGGCGA 酵母双杂交载体构建
pPR3-ScGSTF1-R ATTCTCGAGAGGCCGAGCTGATGGCTTCATCATGG Vector generation for Y2H
221-ScGSTF1-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCCGGCGGTGGCGGCGA 双分子荧光互补载体构建
221-ScGSTF1-R GGGGACCACTTTGTACAAGAAAGCTGGGTCAGCTGATGGCTTCATCATGG Vector generation for BiFC
ScGSTF1-qF TGGACGAGGCGAACGAGACC 定量PCR
ScGSTF1-qR AGCGGCGGTGAGGCAGAC Real-time-qPCR
GAPDH-F CACGGCCACTGGAAGCA 内参基因[69]
GAPDH-R TCCTCAG GGTTCCTGATGCC Real-time-qPCR[69]
Actin-F CCTGAAGATCACCCTGTGCT 内参基因[70]
Actin-R GCAGTCTCCAGCTCCTGTTC Reference gene[70]
SCMV-CP-F TACAGAGAGACACACAGCTG SCMV检测[71]
SCMV-CP-R ACGCTACACCAGAAGACACT Detection of SCMV[71]

Fig. 1

Phylogenetic tree of ScGST and GST proteins from Arabidopsis and rice ScGST is highlighted in red color. The pink clade indicates Tau (GSTU), the green clade indicates dehydroascorbate reductase (DHAR), the blue clade indicates Lambda (GSTL), the red clade indicates Zeta (GSTZ), the green clade indicates tetrachlorohydroquinone dehalogenase (TCHQD), the brown clade indicates Theta (GSTT), the cyan clade indicates γ-subunit of translation elongation factor (EF1G), and the black clade indicates Phi (GSTF)."

Fig. 2

Phylogenetic tree of ScGSTF1 and GSTFs proteins from other plant species Saccharum officinarum: ScGSTF1 (OQ333021); Sorghum bicolor: SbGSTF1 (XP_002458541.1); Zea mays: ZmGSTF2 (ACG25283.1); Panicum virgatum: PvGSTF1 (XP_039849196.1); Setaria viridis: SvGSTF1 (XP034596925.1); Brachypodium distachyon: BdGSTF1 (XP_010232378.1); Hordeum vulgare: HvGSTF1 (XP_044977142.1); Triticum aestivum: TaGSTF1 (XP_044350191.1); Nicotiana tabacum: NbGSTF1 (XP_016472830.1); Solanum tuberosum: StGSTF1 (KAH0657425.1); Arabidopsis thaliana: AtGSTF13 (AT3G62760); Glycine max: GmGSTF21 (NP_001291446.1); Vitis vinifera: VvGSTF13 (RVW54521.1); Prunus persica: PpGSTF13 (XP_007209587.1); Populus trichocarpa: PtGSTF13 (XP_006386755.1). The red box, the green box, and the yellow box indicate the subgroup I-1, the subgroup I-2, and the group II, respectively."

Fig. 3

Secondary structures of ScGSTF1 and GSTFs from other plant species Saccharum officinarum: ScGSTF1 (OQ333021); Arabidopsis thaliana: AtGSTF13 (AT3G62760); Populus trichocarpa: PtGSTF1 (Potri.002G015100.1); Oryza sativa: OsGSTF1 (XP_015642391.1). Secondary structures are labeled and shown using gray arrows (β-strands) and blue squiggles (α-helices)."

Fig. 4

Subcellular localization of ScGSTF1 fused with YFP in the epidermal cells of N. benthamiana Subcellular localization of ScGSTF1-YFP. Bar: 25 μm."

Fig. 5

Protein-protein interactions between ScGSTF1 and SCMV-P3N-PIPO Y2H assay The positive and negative controls are yeast cotransformants with pNubG-Fe65 plus pTSU2-APP and pNubG-Fe65 plus pPR3-N, respectively. DDO+X-Gal: synthetic defined yeast minimal medium lacking Leu and Trp but plus the 5-Bromo-4-Chloro-3-Indolyl β-D-Galactopyranoside (X-Gal); QDO+X-Gal: synthetic defined yeast minimal medium lacking Leu, Trp, His, and Ade but plus the X-Gal."

Fig. 6

Protein-protein interaction between ScGSTF1 and SCMV-P3N-PIPO by BiFC assays A: the C-terminal half of YFP was fused to the N-terminal of SCMV-P3N-PIPO to generate P3N-PIPO-YC, while the N-terminal half of YFP was fused to the C-terminal of ScGSTF1 to generate ScGSTF1-YN. B: the C-terminal half of YFP was fused to the N-terminal of ScGSTF1 to generate ScGSTF1-YC, while the N-terminal half of YFP was fused to the C-terminal of SCMV-P3N-PIPO to generate P3N-PIPO-YN. Plasmids combination of P3N-PIPO-YC plus ScGSTF1-YN (A), ScGSTF1-YC plus SCMV-P3N-PIPO-YN (B) were individually co-injected into N. benthamiana leaves for transient expression. The fluorescent signal was monitored by confocal microscopy at 48 h post infiltration. Bar: 25 μm."

Fig. 7

Tissue specific expression analysis of ScGSTF1 gene LR: leaf roll; +1 L: the first leaf; +7 L: the 7th leaf; +3 I: the 3rd internode; +8 I: the 8th internode; R: root. The error bar represents the standard error of each treating group (n = 3). Bars superscripted by different lowercase letters are significantly different at P < 0.05."

Fig. 8

Relative expression profile of ScGSTF1 gene under the infection of SCMV The error bar represents the standard error of each treatment group (n = 3). Bars superscripted by different lowercase letters are significantly different at P < 0.05."

[1] Edwards R, Dixon D P, Walbot V. Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci, 2000, 5: 193-198.
doi: 10.1016/s1360-1385(00)01601-0 pmid: 10785664
[2] Dixon D P, Davis B G, Edwards R. Functional divergence in the glutathione transferase superfamily in plants. Identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana. J Biol Chem, 2002, 277: 30859-30869.
doi: 10.1074/jbc.M202919200
[3] Dixon D P, Lapthorn A, Edwards R. Plant glutathione transferases. Genome Biol, 2002, 3: 3004.
pmid: 11897031
[4] Gullner G, Komives T, Király L, Schröder P. Glutathione S-transferase enzymes in plant-pathogen interactions. Front Plant Sci, 2018, 9: 1836.
doi: 10.3389/fpls.2018.01836 pmid: 30622544
[5] Wang R B, Ma J F, Zhang Q, Wu C L, Zhao H Y, Wu Y N, Yang G X, He G Y. Genome-wide identification and expression profiling of glutathione transferase gene family under multiple stresses and hormone treatments in wheat (Triticum aestivum L.). BMC Genomics, 2019, 20: 986.
doi: 10.1186/s12864-019-6374-x
[6] Rea P A. MRP subfamily ABC transporters from plants and yeast. J Exp Bot, 1999, 50: 895-913.
doi: 10.1093/jxb/50.Special_Issue.895
[7] Dixon D P, Edwards R. Glutathione transferases. Arabidopsis Book, 2010, 8: e0131.
doi: 10.1199/tab.0131
[8] Cummins I, Wortley D J, Sabbadin F, He Z, Coxon C R, Straker H E, Sellars J D, Knight K, Edwards L, Hughes D, Kaundun S S, Hutchings S J, Steel P G, Edwards R. Key role for a glutathione transferase in multiple-herbicide resistance in grass weeds. Proc Natl Acad Sci USA, 2013, 110: 5812-5817.
doi: 10.1073/pnas.1221179110 pmid: 23530204
[9] 王通, 迟晓元, 王冕, 潘丽娟, 陈明娜, 陈娜, 焦坤. 花生GSTs家族基因的全基因组分析. 花生学报, 2019, 48(4): 25-34.
Wang T, Chi X Y, Wang M, Pan L J, Chen M N, Chen N, Jiao K. Comprehensive genome-wide analysisof GSTs gene family in peanut. J Peanut Sci, 2019, 48(4): 25-34. (in Chinese with English abstract)
[10] 苏久厂, 聂阳, 李龙娜, 沈文飚. S-谷胱甘肽化修饰的研究进展. 生物化学与生物物理进展, 2019, 46(1): 32-42.
Su J C, Nie Y, Li L N, Shen W B. Research progress in S-glutathionylation. Prog Biochem Biophys, 2019, 46(1): 32-42. (in Chinese with English abstract)
[11] Vaish S, Gupta D, Mehrotra R, Mehrotra S, Basantani M K. Glutathione S-transferase: a versatile protein family. 3 Biotech, 2020, 10: 321.
doi: 10.1007/s13205-020-02312-3 pmid: 32656054
[12] Georgakis N, Poudel N, Vlachakis D, Papageorgiou A C, Labrou N E. Phi class glutathione transferases as molecular targets towards multiple-herbicide resistance: Inhibition analysis and pharmacophore design. Plant Physiol Biochem, 2021, 158: 342-352.
doi: 10.1016/j.plaphy.2020.11.018
[13] Georgakis N, Poudel N, Papageorgiou A C, Labrou N E. Comparative structural and functional analysis of phi class glutathione transferases involved in multiple-herbicide resistance of grass weeds and crops. Plant Physiol Biochem, 2020, 149: 266-276.
doi: 10.1016/j.plaphy.2020.02.012
[14] Dos Santos R N, Machado B R, Hefler S M, Zanette J. Glutathione S-transferase activity in aquatic macrophytes and halophytes and biotransformation potential for biocides. J Plant Res, 2021, 134: 577-584.
doi: 10.1007/s10265-021-01266-8 pmid: 33682041
[15] Ioannou E, Papageorgiou A C, Labrou N E. Directed evolution of Phi class glutathione transferases involved in multiple-herbicide resistance of grass weeds and crops. Int J Mol Sci, 2022, 23: 7469.
doi: 10.3390/ijms23137469
[16] Duan Q, Li G R, Qu Y P, Yin D X, Zhang C L, Chen Y S. Genome-wide identification, evolution and expression analysis of the glutathione S-transferase supergene family in euphorbiaceae. Front Plant Sci, 2022, 13: 808279.
doi: 10.3389/fpls.2022.808279
[17] Zhang A Q, Luo R, Li J W, Miao R Q, An H, Yan X F, Pang Q Y. Arabidopsis glutathione-S-transferases GSTF11 and GSTU20 function in aliphatic glucosinolate biosynthesis. Front Plant Sci, 2021, 12: 816233.
doi: 10.3389/fpls.2021.816233
[18] Fang X, An Y Y, Zheng J, Shang-Guan L F, Wang L J. Genome-wide identification and comparative analysis of GST gene family in apple (Malus domestica) and their expressions under ALA treatment. 3 Biotech, 2020, 10: 307.
doi: 10.1007/s13205-020-02299-x
[19] Shao D N, Li Y J, Zhu Q H, Zhang X Y, Liu F, Xue F, Sun J. GhGSTF12, a glutathione S-transferase gene, is essential for anthocyanin accumulation in cotton (Gossypium hirsutum L.). Plant Sci, 2021, 305: 110827.
doi: 10.1016/j.plantsci.2021.110827
[20] Li H, Yang Y X, Li H R, Wang W, Zheng H, Tao J M. Genome-wide identification of glutathione S-transferase and expression analysis in response to anthocyanin transport in the flesh of the new teinturier grape germplasm ‘Zhongshan-HongYu'. Int J Mol Sci, 2022, 23: 7717.
doi: 10.3390/ijms23147717
[21] Nianiou-Obeidat I, Madesis P, Kissoudis C, Voulgari G, Chronopoulou E, Tsaftaris A, Labrou N E. Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications. Plant Cell Rep, 2017, 36: 791-805.
doi: 10.1007/s00299-017-2139-7 pmid: 28391528
[22] Zhang Y H, He J Y, Xiao Y Z, Zhang Y G, Liu Y Q, Wan S Q, Liu L, Dong Y, Liu H, Yu Y B. CsGSTU8, a glutathione S-transferase from camellia sinensis, is regulated by CsWRKY48 and plays a positive role in drought tolerance. Front Plant Sci, 2021, 12: 795919.
doi: 10.3389/fpls.2021.795919
[23] Gao H S, Yu C Y, Liu R C, Li X Y, Huang H Q, Wang X T, Zhang C, Jiang N, Li X F, Cheng S, Zhang H X, Li B. The glutathione S-transferase PtGSTF1 improves biomass production and salt tolerance through regulating xylem cell proliferation, ion homeostasis and reactive oxygen species scavenging in poplar. Int J Mol Sci, 2022, 23: 11288.
doi: 10.3390/ijms231911288
[24] Wang T Z, Zhang D, Chen L, Wang J, Zhang W H. Genome-wide analysis of the Glutathione S-Transferase family in wild Medicago ruthenica and drought-tolerant breeding application of MruGSTU39 gene in cultivated alfalfa. Theor Appl Genet, 2022, 135: 853-864.
doi: 10.1007/s00122-021-04002-x
[25] Wang Q, Guo J, Jin P F, Guo M Y, Guo J, Cheng P, Li Q, Wang B T. Glutathione S-transferase interactions enhance wheat resistance to powdery mildew but not wheat stripe rust. Plant Physiol, 2022, 190: 1418-1439.
doi: 10.1093/plphys/kiac326 pmid: 35876538
[26] Otulak-Kozieł K, Kozieł E, Horváth E, Csiszár J. AtGSTU19 and AtGSTU24 as moderators of the response of Arabidopsis thaliana to Turnip mosaic virus. Int J Mol Sci, 2022, 23: 11531.
doi: 10.3390/ijms231911531
[27] Yang Q, Han X M, Gu J K, Liu Y J, Yang M J, Zeng Q Y. Functional and structural profiles of GST gene family from three populus species reveal the sequence-function decoupling of orthologous genes. New Phytol, 2019, 221: 1060-1073.
doi: 10.1111/nph.15430 pmid: 30204242
[28] Akbar S, Yao W, Qin L F, Yuan Y, Powell C A, Chen B S, Zhang M Q. Comparative analysis of sugar metabolites and their transporters in sugarcane following Sugarcane mosaic virus (SCMV) infection. Int J Mol Sci, 2021, 22: 13574.
doi: 10.3390/ijms222413574
[29] 刘晓雪, 曹付珍, 李凯, 高三基. 全球蔗糖产业竞争力比较及中国提升路径探讨: 基于巴西、澳大利亚、泰国、印度的比较分析. 价格理论与实践, 2021, (12): 12-17.
Liu X X, Cao F Z, Li K, Gao S J. Comparison of global sucrose industry competitiveness and china's improvement path discussion: a comparative analysis based on Brazil, Australia, Thailand, and India. Price: Theory Practice, 2021, (12): 12-17. (in Chinese with English abstract)
[30] 张跃彬, 邓军, 胡朝晖. “十三五”我国蔗糖产业现状及“十四五”发展趋势. 中国糖料, 2022, 44(1): 71-76.
Zhang Y B, Deng J, Hu C H. The 13th Five-Year Plan of cane sugar industry in China and development trend of the 14th Five-Year Plan. Sugar Crops China, 2022, 44(1): 71-76. (in Chinese with English abstract)
[31] 周国辉, 许东林, 沈万宽. 甘蔗重要病害研究及防治策略. 甘蔗糖业, 2005, (1): 11-16.
Zhou G H, Xu D L, Shen W K. On sugarcane major diseases and their controlling. Sugar Canesugar, 2005, (1): 11-16. (in Chinese with English abstract)
[32] Xu D L, Park J W, Mirkov T E, Zhou G H. Viruses causing mosaic disease in sugarcane and their genetic diversity in southern China. Arch Virol, 2008, 153: 1031-1039.
doi: 10.1007/s00705-008-0072-3 pmid: 18438601
[33] 邓宇晴, 杨永庆, 翟玉山, 程光远, 彭磊, 郑艳茹, 林彦铨, 徐景升. 甘蔗花叶病毒福州分离物全基因组克隆及种群分析. 植物病理学报, 2016, 46: 775-782.
Deng Y Q, Yang Y Q, Zhai Y S, Cheng G Y, Peng L, Zheng Y R, Lin Y Q, Xu J S. Genome cloning of two Sugarcane mosaic virus isolates from Fuzhou and phylogenetic analysis of SCMV. Acta Phytopathol Sin, 2016, 46: 775-782 (in Chinese with English abstract).
[34] 李文凤, 丁铭, 方琦, 黄应昆, 张仲凯, 董家红, 苏晓霞, 李婷婷. 云南甘蔗花叶病病原的初步鉴定. 中国糖料, 2006, (2): 4-7.
Li W F, Ding M, Fang Q, Huang Y K, Zhang Z K, Dong J H, Su X X, Li T T. Preliminary identification of sugarcane mosaic pathogeny in Yunnan. Sugar Crops China, 2006, (2): 4-7. (in Chinese with English abstract)
[35] 李文凤, 单红丽, 张荣跃, 王晓燕, 罗志明, 尹炯, 仓晓燕, 李婕, 黄应昆. 我国新育成甘蔗品种(系)对甘蔗线条花叶病毒和高粱花叶病毒的抗性评价. 植物病理学报, 2018, 48: 389-394.
Li W F, Shan H L, Zhang R Y, Wang X Y, Luo Z M, Yin J, Cang X Y, Li J, Huang Y K. Screening for resistance to Sugarcane streak mosaic virus and Sorghum mosaic virus in new elite sugarcane varieties/clones from China. Acta Phytopathol Sin, 2018, 48: 389-394. (in Chinese with English abstract)
[36] Wu L J, Zu X F, Wang S X, Chen Y H. Sugarcane mosaic virus- long history but still a threat to industry. Crop Prot, 2012, 42: 74-78.
doi: 10.1016/j.cropro.2012.07.005
[37] Putra L K, Kristini A, Achadian E M, Damayanti T A. Sugarcane streak mosaic virus in Indonesia: distribution, characterisation, yield losses and management approaches. Sugar Technol, 2014, 16: 392-399.
doi: 10.1007/s12355-013-0279-9
[38] 周丰静, 黄诚华, 李正文, 商显坤, 黄伟华, 潘雪红, 魏吉利, 林善海. 广西蔗区甘蔗花叶病病毒种群分析. 南方农业学报, 2015, 46: 609-613.
Zhou F J, Huang C H, Li Z W, Shuang X S, Huang W H, Pan X H, Wei J L, Lin S H. Analysis of the virus population causing sugarcane mosaic virus disease in sugarcane growing area of Guangxi. J South Agric, 2015, 46: 609-613. (in Chinese with English abstract)
[39] 郑艳茹, 翟玉山, 邓宇晴, 成伟, 程光远, 杨永庆, 徐景升. 甘蔗花叶病毒(SCMV)种群结构分析. 福建农林大学学报(自然科学版), 2016, 45(2): 135-140.
Zheng Y R, Zhai Y S, Deng Y Q, Cheng W, Cheng G Y, Yang Y Q, Xu J S. The population structure of Sugarcane mosaic virus (SCMV). J Fujian Agric For Univ (Nat Sci Edn), 2016, 45(2): 135-140. (in Chinese with English abstract)
[40] 梁姗姗, 罗群, 陈如凯, 高三基. 引起甘蔗花叶病的病原分子生物学进展. 植物保护学报, 2017, 44: 363-370.
Liang S S, Luo Q, Chen R K, Gao S J. Advances in researches on molecular biology of viruses causing sugarcane mosaic. Acta Phytophy Sin, 2017, 44: 363-370 (in Chinese with English abstract).
[41] Dong M, Cheng G Y, Peng L, Xu Q, Yang Y Q, Xu J S. Transcriptome analysis of sugarcane response to the infection by Sugarcane streak mosaic virus (SCSMV). Trop Plant Biol, 2017, 10: 45-55.
doi: 10.1007/s12042-016-9183-2
[42] Yao W, Ruan M H, Qin L F, Yang C Y, Chen R K, Chen B S, Zhang M Q. Field performance of transgenic sugarcane lines resistant to Sugarcane mosaic virus. Front Plant Sci, 2017, 8: 104.
[43] 冯小艳, 王文治, 沈林波, 冯翠莲, 张树珍. 甘蔗线条花叶病毒研究进展. 生物技术通报, 2017, 33(7): 22-28.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0084
Feng X Y, Wang W Z, Shen L B, Feng C L, Zhang S Z. Research advances on Sugarcane streak mosaic virus. Biotechnol Bull, 2017, 33(7): 22-28. (in Chinese with English abstract)
[44] Filloux D, Fernandez E, Comstock J C, Mollov D, Roumagnac P, Rott P. Viral metagenomic-based screening of sugarcane from Florida reveals occurrence of six sugarcane-infecting viruses and high prevalence of Sugarcane yellow leaf virus. Plant Dis, 2018, 102: 2317-2323.
doi: 10.1094/PDIS-04-18-0581-RE pmid: 30207899
[45] Yahaya A, Dangora D B, Kumar P L, Alegbejo M D, Gregg L, Alabi O J. Prevalence and genome characterization of field isolates of Sugarcane mosaic virus (SCMV) in Nigeria. Plant Dis, 2019, 103: 818-824.
doi: 10.1094/PDIS-08-18-1445-RE pmid: 30806574
[46] 沈林波, 吴楠楠, 冯小艳, 熊国如, 赵婷婷, 王文治, 王俊刚, 张树珍. 52个甘蔗品种在广西受病毒侵染情况. 热带作物学报, 2020, 41(1): 116-126.
Shen L B, Wu N N, Feng X Y, Xiong G R, Zhao T T, Wang W Z, Wang J G, Zhang S Z. Virus infection situation of fifty-two sugarcane varieties in Guangxi. Chin J Trop Crops, 2020, 41(1): 116-126. (in Chinese with English abstract)
[47] 杨荣仲, 周会, 肖祎, 吕达, 廖红香, 陈道德, 刘昔辉, 雷敬超, 林垠孚. 甘蔗主要亲本自然条件下抗甘蔗花叶病测定. 中国糖料, 2020, 42(2): 47-52.
Yang R Z, Zhou H, Xiao Y, Lyu D, Liao H X, Chen D D, Liu X H, Lei J C, Lin Y F. Testing on sugarcane mosaic resistance of sugarcane major parents under field conditions. Sugar Crops China, 2020, 42(2): 47-52. (in Chinese with English abstract)
[48] Akbar S, Yao W, Yuan Y, Khan M T, Qin L F, Powell C A, Chen B S, Zhang M Q. Gene expression profiling of reactive oxygen species (ROS) and antioxidant defense system following Sugarcane mosaic virus (SCMV) infection. BMC Plant Biol, 2020, 20: 532.
doi: 10.1186/s12870-020-02737-1
[49] Akbar S, Yao W, Yu K, Qin L F, Ruan M H, Powell C A, Chen B S, Zhang M Q. Photosynthetic characterization and expression profiles of sugarcane infected by Sugarcane mosaic virus (SCMV). Photosynth Res, 2021, 150: 279-294.
doi: 10.1007/s11120-019-00706-w
[50] Hincapie M, Sood S, Mollov D, Odero D C, Grisham M, Rott P. Eight species of poaceae are hosting different genetic and pathogenic strains of Sugarcane mosaic virus in the everglades agricultural area. Phytopathology, 2021, 111: 1862-1869.
doi: 10.1094/PHYTO-11-20-0489-R
[51] 李银煳, 李婕, 覃伟, 王晓燕, 张荣跃, 赵俊, 单红丽, 李文凤, 黄应昆. 国家糖料体系区试示范甘蔗新品种(系)病情调查与抗性分析. 中国糖料, 2022, 44(2): 58-63.
Li Y H, Li J, Qin W, Wang X Y, Zhao R Y, Zhao J, Shan H L, Li W F, Huang Y K. Diseases investigation and resistance analysis of new sugarcane varieties (clones) in the regional test demonstration of the national sugar system. Sugar Crops China, 2022, 44(2): 58-63. (in Chinese with English abstract)
[52] Lu G L, Wang Z T, Xu F, Pan Y B, Grisham M P, Xu L P. Sugarcane mosaic disease: characteristics, identification and control. Microorganisms, 2021, 9: 1984.
doi: 10.3390/microorganisms9091984
[53] Ward C W, Shukla D D. Taxonomy of potyviruses: current problems and some solutions. Intervirology, 1991, 32: 269-296.
pmid: 1657820
[54] Hall J S, Adams B, Parsons T J, French R, Lane L C, Jensen S G. Molecular cloning, sequencing, and phylogenetic relationships of a new potyvirus: Sugarcane streak mosaic virus, and a reevaluation of the classification of the Potyviridae. Mol Phylogenet Evol, 1998, 10: 323-332.
pmid: 10051385
[55] Xu D L, Zhou G H, Xie Y J, Mock R, Li R. Complete nucleotide sequence and taxonomy of Sugarcane streak mosaic virus, member of a novel genus in the family Potyviridae. Virus Genes, 2010, 40: 432-439.
doi: 10.1007/s11262-010-0457-8 pmid: 20162446
[56] Li W F, He Z, Li S F, Huang Y K, Zhang Z X, Jiang D M, Wang X Y, Luo Z M. Molecular characterization of a new strain of Sugarcane streak mosaic virus (SCSMV). Arch Virol, 2011, 156: 2101-2104.
doi: 10.1007/s00705-011-1090-0
[57] Cheng G Y, Dong M, Xu Q, Peng L, Yang Z T, Wei T Y, Xu J S. Dissecting the molecular mechanism of the subcellular localization and cell-to-cell movement of the Sugarcane mosaic virus P3NPIPO. Sci Rep, 2017, 7: 9868.
doi: 10.1038/s41598-017-10497-6
[58] Olspert A, Carr J P, Firth A E. Mutational analysis of the Potyviridae transcriptional slippage site utilized for expression of the P3N-PIPO and P1N-PISPO proteins. Nucleic Acids Res, 2016, 44: 7618-7629.
doi: 10.1093/nar/gkw441 pmid: 27185887
[59] Chung B Y W, Miller W A, Atkins J F, Firth A E. An overlapping essential gene in the Potyviridae. Proc Natl Acad Sci USA, 2008, 105: 5897-5902.
doi: 10.1073/pnas.0800468105
[60] Cheng G Y, Yang Z T, Zhang H, Zhang J S, Xu J S. Remorin interacting with PCaP1 impairs Turnip mosaic virus intercellular movement but is antagonised by VPg. New Phytol, 2020, 225: 2122-2139.
doi: 10.1111/nph.v225.5
[61] Chai M Z, Wu X Y, Liu J H, Fang Y, Luan Y M, Cui X Y, Zhou X P, Wang A M, Cheng X F. P3N-PIPO interacts with P3 via the shared N-terminal domain to recruit viral replication vesicles for cell-to-cell movement. J Virol, 2020, 94: e01898.
[62] Kumar G, Dasgupta I. Variability, functions and interactions of plant virus movement proteins: what do we know so far? Microorganisms, 2021, 9: 695.
doi: 10.3390/microorganisms9040695
[63] Wang A M. Cell-to-cell movement of plant viruses via plasmodesmata: a current perspective on potyviruses. Curr Opin Virol, 2021, 48: 10-16.
doi: 10.1016/j.coviro.2021.03.002
[64] Fraile A, García-Arenal F. The coevolution of plants and viruses: resistance and pathogenicity. Adv Virus Res, 2010, 76: 1-32.
doi: 10.1016/S0065-3527(10)76001-2 pmid: 20965070
[65] Wang A M. Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. Annu Rev Phytopathol, 2015, 53: 45-66.
doi: 10.1146/annurev-phyto-080614-120001 pmid: 25938276
[66] Zhang H, Cheng G Y, Yang Z T, Wang T, Xu J S. Identification of sugarcane host factors interacting with the 6K2 protein of the Sugarcane mosaic virus. Int J Mol Sci, 2019, 20: 3867.
doi: 10.3390/ijms20163867
[67] Yang Z T, Dong M, Cheng G Y, Liu S X, Zhang H, Shang H Y, Zhou Y S, Huang G Q, Zhang M Q, Wang F J, Xu J S. Selective interaction of sugarcane eIF4E with VPgs from sugarcane mosaic pathogens. Viruses, 2021, 13: 518.
doi: 10.3390/v13030518
[68] 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作. 作物学报, 2022, 48: 332-341.
doi: 10.3724/SP.J.1006.2022.14001
Yang Z T, Liu S X, Cheng G Y, Zhang H, Zhou Y S, Shang H Y, Huang G Q, Xu J S. Sugarcane ubiquitin-like protein UBL5 responses to SCMV infection and interacts with SCMV-6K2. Acta Agron Sin, 2022, 48: 332-341. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.14001
[69] Guo J L, Ling H, Wu Q B, Xu L P, Que Y X. The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. Sci Rep, 2014, 4: 7042.
doi: 10.1038/srep07042 pmid: 25391499
[70] Ling H, Wu Q B, Guo J L, Xu L P, Que Y X. Comprehensive selection of reference genes for gene expression normalization in sugarcane by real time quantitative RT-PCR. PLoS One, 2014, 9: e97469.
doi: 10.1371/journal.pone.0097469
[71] Xu J S, Deng Y Q, Cheng G Y, Zhai Y S, Peng L, Dong M, Xu Q, Yang Y Q. Sugarcane mosaic virus infection of model plants Brachypodium distachyon and Nicotiana benthamiana. J Intergr Agric, 2019, 18: 2294-2301.
[72] 朱海龙, 程光远, 彭磊, 柴哲, 郭晋隆, 许莉萍, 徐景升. 甘蔗条纹花叶病毒 P3 蛋白与甘蔗Rubisco大亚基互作的研究. 西北植物学报, 2014, 34: 676-681.
Zhu H L, Cheng G Y, Peng L, Chai Z, Guo J L, Xu L P, Xu J S. Interaction between Sugarcane streak mosaic virus P3 and rubisco large subunit from sugarcane. Acta Bot Boreali-Occident Sin, 2014, 34: 676-681. (in Chinese with English abstract)
[73] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Methods, 2001, 4: 402-408.
[74] Sappl P G, Carroll A J, Clifton R, Lister R, Whelan J, Harvey Millar A, Singh K B. The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing multiple genes results in altered metabolic sensitivity to oxidative stress. Plant J, 2009, 58: 53-68.
doi: 10.1111/j.1365-313X.2008.03761.x
[75] Wagner U, Edwards R, Dixon D P, Mauch F. Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Mol Biol, 2002, 49: 515-532.
doi: 10.1023/A:1015557300450
[76] Jain M, Ghanashyam C, Bhattacharjee A. Comprehensive expression analysis suggests overlapping and specific roles of rice glutathione S-transferase genes during development and stress responses. BMC Genomics, 2010, 11: 73.
doi: 10.1186/1471-2164-11-73 pmid: 20109239
[77] Dixon D P, Hawkins T, Hussey P J, Edwards R. Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily. J Exp Bot, 2009, 60: 1207-1218.
doi: 10.1093/jxb/ern365
[78] Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol, 2004, 55: 373-399.
pmid: 15377225
[79] Morales M, Munné-Bosch S. Oxidative stress: a master regulator of plant trade-offs? Trends Plant Sci, 2016, 21: 996-999.
doi: S1360-1385(16)30156-X pmid: 27751713
[80] Camejo D, Guzmán-Cedeño A, Vera-Macias L, Jiménez A. Oxidative post-translational modifications controlling plant-pathogen interaction. Plant Physiol Biochem, 2019, 144: 110-117.
doi: 10.1016/j.plaphy.2019.09.020
[81] Smirnoff N, Arnaud D. Hydrogen peroxide metabolism and functions in plants. New Phytol, 2019, 221: 1197-1214.
doi: 10.1111/nph.15488 pmid: 30222198
[82] Qi J S, Wang J L, Gong Z Z, Zhou J M. Apoplastic ROS signaling in plant immunity. Curr Opin Plant Biol, 2017, 38: 92-100.
doi: S1369-5266(17)30073-0 pmid: 28511115
[83] Qi J S, Song C P, Wang B S, Zhou J N, Kangasjärvi J, Zhu J K, Gong Z Z. Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. J Integr Plant Biol, 2018, 60: 805-826.
doi: 10.1111/jipb.12654
[84] Anashkina A A, Poluektov Y M, Dmitriev V A, Kuznetsov E N, Mitkevich V A, Makarov A A, Petrushanko I Y. A novel approach for predicting protein S-glutathionylation. BMC Bioinf, 2020, 21: 282.
doi: 10.1186/s12859-020-03571-w
[85] Corpas F J, González-Gordo S, Rodríguez-Ruiz M, Muñoz- Vargas M A, Palma J M. Thiol-based oxidative posttranslational modifications (OxiPTMs) of plant proteins. Plant Cell Physiol, 2022, 63: 889-900.
doi: 10.1093/pcp/pcac036
[86] Moffett A S, Bender K W, Huber S C, Shukla D. Allosteric control of a plant receptor kinase through S-glutathionylation. Biophys J, 2017, 113: 2354-2363.
doi: S0006-3495(17)31074-3 pmid: 29211989
[1] DU Cui-Cui, WU Ming-Xing, ZHANG Ya-Ting, XIE Wan-Jie, ZHANG Ji-Sen, WANG Heng-Bo. Cloning and functional analysis of sucrose transporter protein SsSWEET11 gene in sugarcane (Saccharum spontaneum L.) [J]. Acta Agronomica Sinica, 2023, 49(9): 2385-2397.
[2] MO Guang-Ling, YU Chen-Jing, LIANG Yan-Lan, ZHOU Ding-Gang, LUO Jun, WANG Mo, QUE You-Xiong, HUANG Ning, LING Hui. RT-PCR cloning and functional analysis of ScbHLH13 in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(9): 2485-2497.
[3] HU Xin, LUO Zheng-Ying, LI Chun-Jia, WU Zhuan-Di, LI Xu-Juan, LIU Xin-Long. Comparative transcriptome analysis of elite ‘ROC’ sugarcane parents for exploring genes involved in Sporisorium scitamineum infection by using Illumina- and SMRT-based RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(9): 2412-2432.
[4] YU Quan-Xin, YANG Zong-Tao, ZHANG Hai, CHENG Guang-Yuan, ZHOU Ying-Shuan, JIAO Wen-Di, ZENG Kang, LUO Ting-Xu, HUANG Guo-Qiang, ZHANG Mu-Qing, XU Jing-Sheng. Interaction of sugarcane VAMP associated protein ScPVA12 with SCMV P3N-PIPO [J]. Acta Agronomica Sinica, 2023, 49(9): 2472-2484.
[5] BAI Cheng-Cheng, YAO Xiao-Yao, WANG Yu-Lu, WANG Sai-Yu, LI Jin-Ying, JIANG You-Wei, JIN Shu-Rong, CHEN Chun-Jie, LIU Yu, WEI Xing-Yue, XU Xin-Fu, LI Jia-Na, NI Yu. Cloning of genes involved in cuticular very-long-chain alkane synthesis and its interaction with BnCER1-2 in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(4): 1016-1027.
[6] PAN Jie-Ming, TIAN Shao-Rui, LIANG Yan-Lan, ZHU Yu-Lin, ZHOU Ding-Gang, QUE You-Xiong, LING Hui, HUANG Ning. Identification and expression analysis of PIN-LIKES gene family in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(2): 414-425.
[7] XIAO Jian, WEI Xing-Xuan, YANG Shang-Dong, LU Wen, TAN Hong-Wei. Effects of intercropping with watermelons on cane yields, soil physicochemical properties and micro-ecology in rhizospheres of sugarcanes [J]. Acta Agronomica Sinica, 2023, 49(2): 526-538.
[8] DU Juan, PENG Xiao-Jun, HOU Juan, LIU Teng-Fei, LIU Zeng, SONG Bo-Tao. Identification of potato amylase StBAM9 interacting protein and analysis of the interaction mechanism [J]. Acta Agronomica Sinica, 2023, 49(10): 2643-2653.
[9] SHEN Qing-Qing, WANG Tian-Ju, WANG Jun-Gang, ZHANG Shu-Zhen, ZHAO Xue-Ting, HE Li-Lian, LI Fu-Sheng. Functional identification of Saccharum spontaneum transcription factor SsWRKY1 to improve drought tolerance in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(10): 2654-2664.
[10] WANG Heng-Bo, ZHANG Chang, WU Ming-Xing, LI Xiang, JIANG Zhong-Li, LIN Rong-Xiao, GUO Jin-Long, QUE You-Xiong. Genome-wide identification of NAC transcription factors ATAF subfamily in Sacchrum spontaneum and functional analysis of its homologous gene ScNAC2 in sugarcane cultivar [J]. Acta Agronomica Sinica, 2023, 49(1): 46-61.
[11] LI Pei-Ting, ZHAO Zhen-Li, HUANG Chao-Hua, HUANG Guo-Qiang, XU Liang-Nian, DENG Zu-Hu, ZHANG Yu, ZHAO Xin-Wang. Analysis of drought responsive regulatory network in sugarcane based on transcriptome and WGCNA [J]. Acta Agronomica Sinica, 2022, 48(7): 1583-1600.
[12] LI Xu-Juan, LI Chun-Jia, WU Zhuan-Di, TIAN Chun-Yan, HU Xin, QIU Li-Hang, WU Jian-Ming, LIU Xin-Long. Expression characteristic and gene diversity analysis of ScHTD2 in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(7): 1601-1613.
[13] XIAO Jian, CHEN Si-Yu, SUN Yan, YANG Shang-Dong, TAN Hong-Wei. Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications [J]. Acta Agronomica Sinica, 2022, 48(5): 1222-1234.
[14] ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026.
[15] KONG Chui-Bao, PANG Zi-Qin, ZHANG Cai-Fang, LIU Qiang, HU Chao-Hua, XIAO Yi-Jie, YUAN Zhao-Nian. Effects of arbuscular mycorrhizal fungi on sugarcane growth and nutrient- related gene co-expression network under different fertilization levels [J]. Acta Agronomica Sinica, 2022, 48(4): 860-872.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[5] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[6] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[7] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[8] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[9] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[10] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .