作物学报 ›› 2018, Vol. 44 ›› Issue (6): 844-851.doi: 10.3724/SP.J.1006.2018.00844
黄忠明1,周延彪2,3,*(),唐晓丹3,赵新辉3,周在为3,符星学3,王凯4,史江伟3,李艳锋4,符辰建2,3,杨远柱1,2,3,4,*()
Zhong-Ming HUANG1,Yan-Biao ZHOU2,3,*(),Xiao-Dan TANG3,Xin-Hui ZHAO3,Zai-Wei ZHOU3,Xing-Xue FU3,Kai WANG4,Jiang-Wei SHI3,Yan-Feng LI4,Chen-Jian FU2,3,Yuan-Zhu YANG1,2,3,4,*()
摘要:
为创新优良温敏不育系, 促进两系杂交稻育种的发展, 我们以水稻温敏不育基因TMS5为编辑对象, 设计了由水稻U3启动子驱动、长20 bp的guide RNA (gRNA)靶点以靶向编辑 TMS5 基因的第1个外显子, 将靶点与表达载体pCAMBIA1301连接, 再用农杆菌介导法获得水稻转基因株系。提取T0代转基因株系的基因组DNA, 并对TMS5编辑位点附近的DNA片段进行PCR检测及测序分析。结果表明, T0代植株的突变率为63.89%, 其中纯合缺失突变率为34.78%。对T1代纯合缺失突变体的不育起点温度和农艺性状调查分析结果表明, 28℃是tms5突变体花粉育性的转换温度。大田试验结果表明, 与野生型相比, tms5突变体的结实率和单株重均显著降低。粳稻tms5突变体的获得为培育粳稻不育系奠定了材料基础。
[1] | 周海, 周明, 杨远柱, 曹晓风, 庄楚雄 . RNase ZS1加工UbL40 mRNA控制水稻温敏雄性核不育. 遗传, 2014,36:1274 |
Zhou H, Zhou M, Yang Y Z, Cao X F, Zhuang C X . RNase Z S1 processes UbL40 mRNAs and controls thermosensitive genic male sterility in rice . Hereditas( Beijing), 2014,36:1274 (in Chinese) | |
[2] | 袁隆平 . 我国两系法杂交水稻研究的形势、任务和发展前景. 农业现代化研究, 1997,18(1):1-3 |
Yuan L P . Current status and developing prospects in two-line hybrid rice research in China. Res Agric Modernization, 1997,18(1):1-3 (in Chinese with English abstract) | |
[3] |
Zhou H, Zhou M, Yang Y Z, Li J, Zhu L Y, Jiang D G, Dong J F, Liu Q J, Gu L F, Zhou L Y, Feng M J, Qin P, Hu X C, Song C L, Shi J F, Song X W, Ni E D, Wu X J, Deng Q Y, Liu Z L, Chen M S, Liu Y G, Cao X F, Zhuang C X . RNase Z S1 processes UbL40 mRNAs and controls thermosensitive genic male sterility in rice. Nat Commun, 2014,5:4884
doi: 10.1038/ncomms5884 pmid: 25208476 |
[4] |
Belhaj K, Chaparro-Garcia A, Kamoun S, Patron N J, Nekrasov V . Editing plant genomes with CRISPR/Cas9. Curr Opin Biotech, 2015,32:76-84
doi: 10.1016/j.copbio.2014.11.007 |
[5] |
Baltes N J, Voytas D F . Enabling plant synthetic biology through genome engineering. Trends Biotechnol, 2015,33:120-131
doi: 10.1016/j.tibtech.2014.11.008 |
[6] | 瞿礼嘉, 郭冬姝, 张金喆, 秦跟基 . CRISPR/Cas系统在植物基因组编辑中的应用. 生命科学, 2015, ( 1):64-70 |
Qu L J, Guo D S, Zhang J Z, Qin G J . The application of CRISPR/Cas system in plant genome editing. Chin Bull Life Sci, 2015, ( 1):64-70 (in Chinese with English abstract) | |
[7] |
Wiedenheft B, Sternberg S H, Doudna J A . RNA-guided genetic silencing systems in bacteria and archaea. Nature, 2012,482:331-338
doi: 10.1038/nature10886 |
[8] |
Symington L S, Gautier J . Double-strand break end resection and repair pathway choice. Annu Rev Genet, 2011,45:247-271
doi: 10.1146/annurev-genet-110410-132435 |
[9] |
Shan Q W, Wang Y P, Li J, Zhang Y, Chen K L, Liang Z, Zhang K, Liu J X , X J J, Qiu J L, Gao C X. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol, 2013,31:686-688
doi: 10.1038/nbt.2650 pmid: 23929338 |
[10] |
Feng Z Y, Zhang B T, Ding W N, Liu X D, Yang D L, Wei P L, Cao F Q, Zhu S H, Zhang F, Mao Y F, Zhu J K . Efficient genome editing in plants using a CRISPR/Cas system. Cell Res, 2013,23:1229-1232
doi: 10.1038/nbt.2501 pmid: 23360964 |
[11] |
Li J, Meng X B, Zong Y, Chen K L, Zhang H W, Liu J X, Li J Y, Gao C X . Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9. Nat Plants, 2016,2:16139
doi: 10.1038/nplants.2016.139 pmid: 27618611 |
[12] |
Li J Y, Sun Y W, Du J L, Zhao Y D, Xia L Q . Generation of targeted point mutations in rice by a modified CRISPR/CAS9 system. Mol Plant, 2017,10:526-529
doi: 10.1016/j.molp.2016.12.001 pmid: 27940306 |
[13] |
Lu Y, Zhu J K . Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol Plant, 2017,10:523-525
doi: 10.1016/j.molp.2016.11.013 pmid: 27932049 |
[14] |
Xie K, Zhang J, Yang Y . Genome-wide prediction of highly specific guide RNA spacers for CRISPR-Cas9-mediated genome editing in model plants and major crops. Mol Plant, 2014,7:923-926
doi: 10.1093/mp/ssu009 pmid: 24482433 |
[15] |
Lin J Z, Zhou B, Yang Y Z, Mei J, Zhao X Y, Guo X H, Huang X Q, Tang D Y, Liu X M . Piercing and vacuum infiltration of the mature embryo: a simplified method for Agrobacterium-mediated transformation of indica rice. Plant Cell Rep, 2009,28:1065-1074
doi: 10.1007/s00299-009-0706-2 pmid: 19455339 |
[16] |
Zhang H, Xu C X, He Y, Zong J, Yang X J, Si H M, Sun Z X, Hu J P, Liang W Q, Zhang D B . Mutation in CSA creates a new photoperiod-sensitive genic male sterile line applicable for hybrid rice seed production. Proc Natl Acad Sci USA, 2013,110:76-81
doi: 10.1073/pnas.1213041110 |
[17] | Zhou Y B, Liu H, Zhou X C, Yan Y Z, Du C Q, Li Y X, Liu D R, Zhang C S, Deng X L, Tang D Y, Zhao X Y, Zhu Y H, Lin J Z, Liu X M . Over-expression of a fungal NADP(H)-dependent glutamate dehydrogenase PcGDH improves nitrogen assimilation and growth quality in rice. Mol Breed, 2014,34:335-349 |
[18] |
Liu W, Xie X, Ma X, Li J, Chen J, Liu Y G . DSDecode: a web-based tool for decoding of sequencing chromatograms for genotyping of targeted mutations. Mol Plant, 2015,8:1431-1433
doi: 10.1016/j.molp.2015.05.009 |
[19] |
Zhou H, He M, Li J, Chen L, Huang Z F, Zheng S Y, Zhu L Y, Ni E D, Jiang D G, Zhao B R, Zhuang C X . Development of commercial thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system. Sci Rep, 2016,6:37395
doi: 10.1038/srep37395 |
[20] |
Li M R, Li X X, Zhou Z J, Wu P Z, Fang M C, Pan X P, Lin Q P, Luo W B, Wu G J, Li H Q . Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Front Plant Sci, 2016,7:377
doi: 10.3389/fpls.2016.00377 pmid: 27066031 |
[21] |
Svitashev S, Schwartz C, Lenderts B, Young J K, Ciqan A M . Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat Commun, 2016,7:13274
doi: 10.1038/ncomms13274 pmid: 27848933 |
[22] |
Feng C, Yuan J, Wang R, Liu Y, Birchler J A, Han F P . Efficient targeted genome modification in maize using CRISPR/Cas9 system. J Genet Genomics, 2016,43:37-43
doi: 10.1016/j.jgg.2015.10.002 |
[23] |
Shan Q W, Wang Y P, Li J, Gao C X . Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc, 2014,9:2395-2410
doi: 10.1038/nprot.2014.157 |
[24] |
Wang Y P, Cheng X, Shan Q W, Zhang Y, Liu J X, Gao C X, Qiu J L . Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol, 2014,32:947-951
doi: 10.1038/nbt.2969 |
[25] |
Cai Y P, Chen L, Liu X J, Sun S, Wu C X, Jiang B J, Han T F, Hou W S . CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS One, 2015,10:e0136064
doi: 10.1371/journal.pone.0136064 |
[26] |
Jacobs T B , LaFayette P R, Schmitz R J, Parrott W A. Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol, 2015,15:16
doi: 10.1186/s12896-015-0131-2 |
[27] |
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E . A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012,337:816-821
doi: 10.1126/science.1225829 |
[28] |
Ma X L, Zhang Q Y, Zhu Q L, Liu W, Chen Y, Qiu R, Wang B, Yang Z F, Li H Y, Lin Y R, Xie Y Y, Shen R X, Chen S F, Wang Z, Chen Y L, Guo J X, Chen L T, Zhao X C, Dong Z C, Liu Y G . A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant, 2015,8:1274-1284
doi: 10.1016/j.molp.2015.04.007 |
[29] |
Zhang H, Zhang J S, Wei P L, Zhang B T, Gou F, Feng Z Y, Mao Y F, Yang L, Zhang H, Xu N F, Zhu J K . The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J, 2014,12:797-807
doi: 10.1111/pbi.2014.12.issue-6 |
[30] |
杨远柱, 符辰建, 胡小淳, 张章, 周永祥, 宋永帮 . 株1S温敏核不育基因的发现及超级杂交早稻育种研究. 中国稻米, 2007, ( 6):17-22
doi: 10.3969/j.issn.1006-8082.2007.06.005 |
Yang Y Z, Fu C J, Hu X C, Zhang Z, Zhou Y X, Song Y B . Discovery of thermo-sensitive genic male sterile genes of Zhu1S and study on super hybrid early rice breeding. China Rice, 2007, ( 6):17-22 (in Chinese)
doi: 10.3969/j.issn.1006-8082.2007.06.005 |
|
[31] |
李必湖, 吴厚雄, 徐孟亮, 梁满中, 张振华, 陈良碧 . 温敏核不育水稻育性对低温持续时间的敏感性差异比较研究. 作物学报, 2003,29:930-936
doi: 10.3321/j.issn:0496-3490.2003.06.023 |
Li B H, Wu H X, Xu M L, Liang M Z, Zhang Z H, Chen L B . Comparative studies on the sensitivity of fertility of TGMS rice lines to low temperature of consecutive time. Acta Agron Sin, 2003,29:930-936 (in Chinese with English abstract)
doi: 10.3321/j.issn:0496-3490.2003.06.023 |
|
[32] |
Xing Y Z, Zhang Q F . Genetic and molecular bases of rice yield. Annu Rev Plant Biol, 2010,61:421-442
doi: 10.1146/annurev-arplant-042809-112209 pmid: 20192739 |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[12] | 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811. |
[13] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[14] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[15] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
|