欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (3): 423-431.doi: 10.3724/SP.J.1006.2020.91046

• 耕作栽培·生理生化 • 上一篇    下一篇

播种方式与种植密度互作对大穗型小麦品种产量和氮素利用率的调控效应

郑飞娜,初金鹏,张秀,费立伟,代兴龙(),贺明荣()   

  1. 山东农业大学农学院 / 作物生物学国家重点实验室 / 农业农村部作物生理生态与耕作重点实验室, 山东泰安271018
  • 收稿日期:2019-07-07 接受日期:2019-09-26 出版日期:2020-03-12 发布日期:2019-10-14
  • 通讯作者: 代兴龙,贺明荣 E-mail:adaisdny@163.com;mrhe@sdau.edu.cn
  • 作者简介:E-mail: fnzheng123@163.com
  • 基金资助:
    本研究由国家重点研发计划项目(2016YFD0300403);国家自然科学基金青年基金(31801298);山东省自然科学基金博士基金项目资助(ZR2018BC034)

Interactive effects of sowing pattern and planting density on grain yield and nitrogen use efficiency in large spike wheat cultivar

Fei-Na ZHENG,Jin-Peng CHU,Xiu ZHANG,Li-Wei FEI,Xing-Long DAI(),Ming-Rong HE()   

  1. College of Agronomy, Shandong Agricultural University / State Key Laboratory of Crop Biology / Key Laboratory of Crop Ecophysiology and Farming System, Ministry of Agriculture and Rural Affairs, Tai’an 271018, Shandong, China
  • Received:2019-07-07 Accepted:2019-09-26 Online:2020-03-12 Published:2019-10-14
  • Contact: Xing-Long DAI,Ming-Rong HE E-mail:adaisdny@163.com;mrhe@sdau.edu.cn
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2016YFD0300403);the National Natural Science Foundation of China(31801298);the Natural Science Foundation of Shandong Province(ZR2018BC034)

摘要:

为探明实现冬小麦进一步增产增效的调控途径, 于2015—2016年和2016—2017年连续两个生长季, 选用大穗型品种泰农18, 设置2种播种方式(宽幅播种和常规条播)和7个种植密度(130×10 4、200×10 4、270×10 4、340×10 4、410×10 4、480×10 4和550×10 4株 hm -2), 研究了播种方式与种植密度互作对大穗型小麦品种产量和氮素利用率的调控效应。结果表明, 与常规条播相比, 宽幅播种配合增密能够有效缓解单位面积穗数增加与单穗粒重降低、氮素吸收效率提高与氮素内在利用效率下降之间的矛盾, 通过增加单位面积穗数和氮素吸收效率协同提高籽粒产量和氮素利用率。宽幅播种条件下获得最高产量和氮素利用率的密度为410×10 4株 hm -2, 显著高于常规条播条件下的最优密度(340×10 4株 hm -2), 且其增产增效幅度亦显著高于常规条播。综上所述, 宽幅播种配合合理密植具有进一步协同提高大穗型小麦品种产量和氮素利用率的潜力。在本试验条件下, 宽幅播种(苗带宽8~10 cm)与410×10 4株 hm -2密度相匹配是大穗型小麦品种泰农18获得更高产高效的最优组合。

关键词: 宽幅播种, 种植密度, 互作效应, 产量, 氮素利用率

Abstract:

In order to find out the way to achieve further improvement in the grain yield (GY) and nitrogen use efficiency (NUE) of winter wheat, two sowing pattern (the wide range sowing and conventional drilling sowing) and seven planting densities (130×10 4, 200×10 4, 270×10 4, 340×10 4, 410×10 4, 480×10 4, and 550×10 4 plants hm -2) were designed during 2015-2016 and 2016-2017 growing seasons. Tainong 18, a winter wheat cultivar with larger spike and lower tillering capacity, was used to investigate the combined effects of sowing pattern and planting density on GY and NUE. Compared with the conventional drilling sowing, the wide range sowing with higher planting density effectively alleviated the negative effect of increasing spikes per unit area and nitrogen uptake efficiency (NUpE) on decreasing single spike weight and nitrogen utilization efficiency (NUtE), respectively. Concurrent improvement in GY and NUE was achieved by increasing the number of spikes per unit area and NUpE. The planting density resulting in the highest GY and NUE under wide range sowing conditions was 410×10 4 plants hm -2, which was significantly higher than that (340×10 4 plants hm -2) under conventional drilling sowing. Moreover, the increase percentage of GY and NUE under wide ranging sowing was also significantly higher than that under drilling sowing. In summary, it is feasible to further improve GY and NUE of large spike wheat cultivar through rational combination of wide range sowing with higher planting density. Under the condition of this experiment, the optimal combination measure for high GY and NUE was sowing width of 8-10 cm with plant density of 410×10 4 plants hm -2.

Key words: wide range sowing pattern, planting density, interaction effect, grain yield, nitrogen use efficiency

表1

2015-2016 和2016-2017 生育季冬小麦播前0~0.20 m和0.20~0.40m土层基础地力"

年份
Year
土层
Soil layer
(m)
容重
Bulk density
(g cm-3)
有机质
Organic matter
(g kg-1)
全氮
Total N
(g kg-1)
碱解氮
Alkali-hydrolysable N
(mg kg-1)
速效磷
Available P
(mg kg-1)
速效钾
Available K
(mg kg-1)
2015-2016 0-0.20 1.33 14.67 1.15 77.98 30.84 90.31
0.20-0.40 1.35 12.25 0.83 33.70 6.63 60.29
2016-2017 0-0.20 1.32 16.98 1.23 60.20 31.24 80.18
0.20-0.40 1.35 13.25 0.90 48.10 6.95 47.62

表2

年份(Y)、播种方式(S)与种植密度(D)对大穗型小麦品种产量、产量构成因素、氮素利用率及其构成因素影响的方差分析"

变异来源
Source of variation
籽粒产量
Grain yield
单位面积穗数
Spikes per unit area
穗粒数
Kernels per spike
千粒重
1000-kernel weight
氮素利用率
NUE
氮素吸收效
率NUpE
氮素内在利用
效率NUtE
Year (Y) 28.72*** 81.09*** 44.55*** 121.76*** 3.63 92.40*** 94.53*
Sowing pattern (S) 261.72*** 76.74*** 1416.26*** 193.30*** 258.20*** 501.13*** 46.44**
Planting density (D) 48.65*** 1483.46*** 5.37* 296.95*** 47.77*** 93.54*** 73.09***
Y×S 27.03*** 2114.91** 5.02*** 2.39*** 28.60*** 19.66** 13.85*
Y×D 1.50 2.56* 481.40*** 669.16*** 0.83 3.13*** 3.77**
S×D 6.01*** 5.35*** 173.65*** 14.27* 5.92*** 7.18*** 12.79***
S×D×Y 0.36 38.54*** 5.82*** 2.82* 0.38 0.18 3.76**

图1

播种方式与种植密度互作对大穗型小麦品种产量的影响 误差线表示3次重复的标准误。"

表3

播种方式与种植密度互作对大穗型小麦品种产量和氮素利用率构成因素的影响"

年份
Year
播种方式
Sowing
pattern
种植密度
Plant density
(×104 plants hm-2)
穗数
Spikes per unit
area (×104 plants hm-2)
穗粒数
Kernels per spike
(No. spike-1)
千粒重
1000-kernel
weight (g)
氮素吸收效率NUpE
(%)
氮素利用效率NUtE
(kg kg-1)
2015-2016 宽幅播种
Wide range
T130 451.05 f 49.40 a 39.96 ef 55.73 i 33.27 b
T200 540.07 de 47.48 bc 39.61 fg 68.23 e 30.70 de
T270 622.61 c 45.63 cd 39.12 h 76.88 d 29.44 fg
T340 696.65 b 43.55 e 38.62 i 83.52 b 28.54 gh
T410 748.65 a 41.57 fg 38.13 ij 86.18 a 28.27 h
T480 778.02 a 38.22 h 37.72 j 81.67 c 28.15 h
T550 783.83 a 35.99 i 37.20 k 76.41 d 27.90 h
传统条播
Drilling
T130 388.67 g 47.95 ab 42.99 a 46.57 j 36.21 a
T200 460.33 f 45.50 d 42.68 a 55.98 hi 33.50 b
T270 529.00 e 43.05 ef 42.17 b 62.71 g 31.92 c
T340 583.33 cd 40.73 g 41.58 c 66.90 e 31.04 cd
T410 600.63 c 38.06 h 41.06 d 65.17 f 30.79 de
T480 608.50 c 35.46 i 40.19 e 61.43 g 29.70 ef
T550 611.03 c 33.02 g 39.36 gh 57.56 h 28.17 h
2016-2017 宽幅播种
Wide range
T130 450.27 h 45.30 bc 42.28 a 63.44 h 29.76 c
T200 554.33 f 44.28 cd 41.01 b 72.36 e 28.32 ef
T270 646.38 d 42.39 e 39.91 c 78.62 d 27.70 fg
T340 699.82 c 41.11 f 38.92 d 83.73 b 27.29 gh
T410 742.96 ab 40.01 g 38.04 ef 85.80 a 27.14 ghi
T480 767.69 a 38.43 h 37.35 gh 83.72 b 26.96 hi
T550 779.03 a 37.33 i 36.84 hi 81.14 c 26.43 i
传统条播Drilling T130 413.99 i 46.92 a 41.19 b 58.00 i 31.92 a
T200 498.27 g 45.70 b 39.95 c 64.28 h 30.61 b
T270 572.71 f 43.71 d 38.59 de 68.96 g 29.91 bc
T340 608.97 de 42.50 e 37.83 fg 72.91 e 29.42 cd
T410 635.73 d 41.25 f 36.63 i 71.66 f 28.96 e
T480 649.79 d 39.31 gh 35.72 j 70.23 fg 27.78 fg
T550 654.84 d 38.30 hi 35.21 j 69.22 g 26.54 i

图2

播种方式与种植密度互作对大穗型小麦品种氮素利用率(NUE)的影响 误差线表示3次重复的标准误。"

图3

播种方式与种植密度互作对大穗型小麦品种穗数和单穗粒重的影响 误差线表示3次重复的标准误。"

图4

播种方式与种植密度互作对大穗型小麦品种氮素吸收效率和氮素内在利用效率的影响 误差线表示3次重复的标准误。"

[1] Tokatlidis I S . Addressing the yield by density interaction is a prerequisite to bridge the yield gap of rain-fed wheat. Ann Appl Biol, 2014,165:27-42.
[2] Dai X L, Zhou X H, Jia D Y, Xiao L L, Kong H B, He M R . Managing the seeding rate to improve nitrogen-use efficiency of winter wheat. Field Crops Res, 2013,154:100-109.
[3] Dai X L, Xiao L L, Jia D Y, Kong H B, Wang Y C, Li C X, Zhang Y, He M R . Increased plant density of winter wheat can enhance nitrogen-uptake from deep soil. Plant Soil, 2014,384:141-152.
[4] 冯伟, 李世莹, 王永华, 康国章, 段剑钊, 郭天财 . 宽幅播种下带间距对冬小麦衰老进程及产量的影响. 生态学报, 2015,35:2686-2694.
Feng W, Li S Y, Wang Y H, Kang G Z, Duan J Z, Guo T C . Effects of spacing intervals on the ageing process and grain yield in winter wheat under wide bed planting methods. Acta Ecol Sin, 2015,35:2686-2694 (in Chinese with English abstract).
[5] 李世莹, 冯伟, 王永华, 王晨阳, 郭天财 . 宽幅播种带间距对冬小麦冠层特征及产量的影响. 植物生态学报, 2013,37:758-767.
Li S Y, Feng W, Wang Y H, Wang C Y, Guo T C . Effects of spacing interval of wide bed planting on canopy characteristics and yield in winter wheat. Chin J Plant Ecol, 2013,37:758-767 (in Chinese with English abstract).
[6] 初金鹏, 朱文美, 尹立俊, 石玉华, 邓淑珍, 张良, 贺明荣, 代兴龙 . 宽幅播种对冬小麦‘泰农18’产量和氮素利用率的影响. 应用生态学报, 2018,29:2517-2524.
Chu J P, Zhu W M, Yin L J, Shi Y H, Deng S Z, Zhang L, He M R, Dai X L . Effects of wide-range planting on the yield and nitrogen use efficiency of winter wheat cultivar Tainong 18. Chin J Appl Ecol, 2018,29:2517-2524 (in Chinese with English abstract).
[7] 石玉华, 初金鹏, 尹立俊, 贺明荣, 邓淑珍, 张良, 孙晓乐, 田奇卓, 代兴龙 . 宽幅播种提高不同播期小麦产量与氮素利用率. 农业工程学报, 2018,34(17):127-133.
Shi Y H, Chu J P, Yin L J, He M R, Deng S Z, Zhang L, Sun X Y, Tian Q Z, Dai X L . Wide-range sowing improving yield and nitrogen use efficiency of wheat sown at different dates. Trans CSAE, 2018,34(17):127-133 (in Chinese with English abstract).
[8] 杨文平, 郭天财, 刘胜波, 王晨阳, 王永华, 马冬云 . 行距配置对‘兰考矮早八’小麦后期群体冠层结构及其微环境的影响. 植物生态学报, 2008,32:485-490.
Yang W P, Guo T C, Liu S B, Wang C Y, Wang Y H, Ma D Y . Effects of row spacing in winter wheat on canopy structure and microclimate in later growth stage. Chin J Plant Ecol, 2008,32:485-490 (in Chinese with English abstract).
[9] 郭天财, 刘胜波, 冯伟, 杨文平, 王永华, 韩巧霞 . 不同种植行距的大穗型小麦品种‘兰考矮早八’中几种与旗叶衰老有关的生理指标变化. 植物生理学通讯, 2008,44:33-36.
Guo T C, Liu S B, Feng W, Yang W P, Wang Y H, Han Q X . Changes in several physiological indices related to senescence in flag leaves of heave-ear wheat ‘Lankao’aizao 8’ with different row spacing. Plant Physiol Commum, 2008,44:33-36 (in Chinese with English abstract).
[10] 郭天财, 盛坤, 冯伟, 徐丽娜, 王晨阳 . 种植密度对两种穗型小麦品种分蘖期茎蘖生理特性的影响. 西北植物学报, 2009,29:350-355.
Guo T C, Sheng K, Feng W, Xu L N, Wang C Y . Effects of plant density on physiological characteristics of different stems during tillering stage in two spike-types winter wheat cultivars. Acta Bot Boreal-Occident Sin, 2009,29:350-355 (in Chinese with English abstract).
[11] Moll R H, Kamprath E J, Jackson W A . Analysis and interpretation of factors which contribute to efficiency to nitrogen utilization. Agron J, 1982,75:562-564.
[12] 申建波, 毛达如 . 植物营养学研究方法(第3版). 北京: 中国农业大学出版社, 2011. pp 52-53.
Shen J B, Mao D R. Research Methods of Plant Nutrition, 3rd edn. Beijing: China Agricultural University Press, 2011. pp 52-53(in Chinese).
[13] Ma S C, Wang T C, Guan X K, Zhang X . Effect of sowing time and seeding rate on yield components and water use efficiency of winter wheat by regulating the growth redundancy and physiological traits of root and shoot. Field Crops Res, 2018,221:166-174.
[14] Melash A A, Mengistu D K, Aberra D A, Tsegay A . The influence of seeding rate and micronutrients foliar application on grain yield and quality traits and micronutrients of durum wheat. J Cereal Sci, 2019,85:221-227.
[15] Tao Z Q, Ma S K, Chang X H, Wang D M, Wang Y J, Yang Y S, Zhao G C, Yang J C . Effects of tridimensional uniform sowing on water consumption, nitrogen use, and yield in winter wheat. Crop J, 2019. 7:480-493.
[16] Zhu Y G, Chu J P, Dai X L, He M R . Delayed sowing increases grain number by enhancing spike competition capacity for assimilates in winter wheat. Eur J Agron, 2019,104:49-62.
[17] Chen C, Neill K, Wichman D, Westcott M . Hard red spring wheat response to row spacing, seeding rate, and nitrogen. Agron J, 2008,100:1296-1302.
[18] Carr P M, Horsley R D, Poland W W . Tillage and seeding rate effects on wheat cultivars: I. Grain production. Crop Sci, 2003,43:202-209.
[19] Lloveras J, Manent J, Viudas J, López A, Santiveri P . Seeding rate influence on yield and yield components of irrigated winter wheat in a Mediterranean climate. Agron J, 2004,96:1258-1265.
[20] 张永丽, 肖凯, 李雁鸣 . 种植密度对杂种小麦C6-38/Py85-1旗叶光合特性和产量的调控效应及其生理机制. 作物学报, 2005,31:498-505.
Zhang Y L, Xiao K, Li Y M . Effects and physiological mechanism of planting densities on photosynthesis characteristics of flag leaf and grain yield in wheat hybrid C6-38/Py85-1. Acta Agron Sin, 2005,31:498-505 (in Chinese with English abstract).
[21] 陈雨海, 余松烈, 于振文 . 小麦生长后期群体光截获量及其分布与产量的关系. 作物学报, 2003,29:730-734.
Chen Y H, Yu S L, Yu Z W . Relationship between amount or distribution of PAR interception and grain output of wheat communities. Acta Agron Sin, 2003,29:730-734 (in Chinese with English abstract).
[22] Yang D Q, Cai T, Luo Y L, Wang Z L . Optimizing plant density and nitrogen application to manipulate tiller growth and increase grain yield and nitrogen-use efficiency in winter wheat. Peer J: Life Environ, 2019,7:e6468.
[23] 曹倩, 贺明荣, 代兴龙, 门洪文, 王成雨 . 密度、氮肥互作对小麦产量及氮素利用效率的影响. 植物营养学与肥料学报, 2011,17:815-822.
Cao Q, He M R, Dai X L, Men H W, Wang C Y . Effects of interaction between density and nitrogen on grain yield and nitrogen use efficiency of winter wheat. Plant Nutr Fert Sci, 2011,17:815-822 (in Chinese with English abstract).
[24] Foulkes M J, Hawkesford M J, Barraclough P B, Holdsworth M J, Kerr S, Kightley S, Shewry P R . Identifying traits to improve the nitrogen economy of wheat: Recent advances and future prospects. Field Crops Res, 2009,114:329-342.
[25] Salvagiotti F, Castellarin J M, Miralles D J, Pedrol H M . Sulfur fertilization improves nitrogen use efficiency in wheat by increasing nitrogen uptake. Field Crops Res, 2009,113:170-177.
[26] Dai X L, Wang Y C, Dong X C, Qian T F, Yin L J, Dong S X, Chu J P, He M R . Delayed sowing can increase lodging resistance while maintaining grain yield and nitrogen use efficiency in winter wheat. Crop J, 2017,5:541-552.
[27] Sadras V O, Lawson C . Nitrogen and water-use efficiency of Australian wheat varieties released between 1958 and 2007. Eur J Agron, 2013,46:34-41.
[1] 杨志远,李娜,马鹏,严田蓉,何艳,蒋明金,吕腾飞,李郁,郭翔,胡蓉,郭长春,孙永健,马均. 水肥“三匀”技术对水稻水、氮利用效率的影响[J]. 作物学报, 2020, 46(3): 408-422.
[2] 王士红,杨中旭,史加亮,李海涛,宋宪亮,孙学振. 增密减氮对棉花干物质和氮素积累分配及产量的影响[J]. 作物学报, 2020, 46(3): 395-407.
[3] 解松峰,吉万全,张耀元,张俊杰,胡卫国,李俊,王长有,张宏,陈春环. 小麦重要产量性状的主基因+多基因混合遗传分析[J]. 作物学报, 2020, 46(3): 365-384.
[4] 刘永晨,司成成,柳洪鹃,张彬彬,史春余. 改善土壤通气性促进甘薯源库间光合产物运转的原因解析[J]. 作物学报, 2020, 46(3): 462-471.
[5] 叶夕苗,程鑫,安聪聪,袁剑龙,余斌,文国宏,李高峰,程李香,王玉萍,张峰. 马铃薯产量组分的基因型与环境互作及稳定性[J]. 作物学报, 2020, 46(3): 354-364.
[6] 丁永刚, 李福建, 王亚华, 汤小庆, 杜同庆, 朱敏, 李春燕, 朱新开, 丁锦峰, 郭文善. 稻茬小麦氮高效品种产量构成和群体质量特征[J]. 作物学报, 2020, 46(04): 544-556.
[7] 卫平洋, 裘实, 唐健, 肖丹丹, 朱盈, 刘国栋, 邢志鹏, 胡雅杰, 郭保卫, 高尚勤, 魏海燕, 张洪程. 安徽沿淮地区优质高产常规粳稻品种筛选及特征特性[J]. 作物学报, 2020, 46(04): 571-585.
[8] 赵小红, 白羿雄, 王凯, 姚有华, 姚晓华, 吴昆仑. 种植密度对2个青稞品种抗倒伏及秸秆饲用特性的影响[J]. 作物学报, 2020, 46(04): 586-595.
[9] 金容, 李钟, 杨云, 周芳, 杜伦静, 李小龙, 孔凡磊, 袁继超. 密度和株行距配置对川中丘区夏玉米群体光分布及雌雄穗分化的影响[J]. 作物学报, 2020, 46(04): 614-630.
[10] 罗俊, 林兆里, 李诗燕, 阙友雄, 张才芳, 杨仔奇, 姚坤存, 冯景芳, 陈建峰, 张华. 不同土壤改良措施对机械压实酸化蔗地土壤理化性质及微生物群落结构的影响[J]. 作物学报, 2020, 46(04): 596-613.
[11] 陈晓影,刘鹏,程乙,董树亭,张吉旺,赵斌,任佰朝,韩坤. 基于磷肥施用深度的夏玉米根层调控提高土壤氮素吸收利用[J]. 作物学报, 2020, 46(02): 238-248.
[12] 赵伟,甄天悦,张子山,徐铮,高大鹏,丁聪,刘鹏,李耕,宁堂原. 增施磷肥提高弱光环境中夏大豆叶片光合能力及产量[J]. 作物学报, 2020, 46(02): 249-258.
[13] 廖萍,刘磊,何宇轩,唐刚,张俊,曾勇军,吴自明,黄山. 施石灰和秸秆还田对双季稻产量和氮素吸收的互作效应[J]. 作物学报, 2020, 46(01): 84-92.
[14] 王艳,易军,高继平,张丽娜,杨继芬,赵艳泽,辛威,甄晓溪,张文忠. 不同叶龄蘖、穗氮肥组合对粳稻产量及氮素利用的影响[J]. 作物学报, 2020, 46(01): 102-116.
[15] 唐健,唐闯,郭保卫,张诚信,张振振,王科,张洪程,陈恒,孙明珠. 氮肥施用量对机插优质晚稻产量和稻米品质的影响[J]. 作物学报, 2020, 46(01): 117-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清;李阳生;吴福顺;廖江林;李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[3] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[4] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[5] 胡玉琪;廖晓海. 玉米叶形系数研究[J]. 作物学报, 1986, (01): 71 -72 .
[6] 倪大虎;易成新;李莉;汪秀峰;张毅;赵开军;王春连;章琦;王文相;杨剑波. 分子标记辅助培育水稻抗白叶枯病和稻瘟病三基因聚合系[J]. 作物学报, 2008, 34(01): 100 -105 .
[7] 邱崇力. 普通小麦与六倍体小黑麦杂交不亲和性的研究 Ⅰ.杂种的胚胎发育[J]. 作物学报, 1986, (01): 49 -56 .
[8] 赵庆华;黄剑华;颜昌敬. 油菜花粉发芽的研究[J]. 作物学报, 1986, (01): 15 -20 .
[9] 王立新;李云伏;常利芳;黄 岚;李宏博;葛玲玲;刘丽华;姚 骥;赵昌平;姚 骥;赵昌平. 建立小麦品种DNA指纹的方法研究[J]. 作物学报, 2007, 33(10): 1738 -1740 .
[10] 王英;吴存祥;张学明;王云鹏;韩天富. 不同光周期条件下大豆生育期主基因的效应[J]. 作物学报, 2008, 34(07): 1160 -1168 .