欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (1): 47-52.doi: 10.3724/SP.J.1006.2010.00047

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米籽粒生理成熟后自然脱水速率QTL的初步定位

刘显君1,王振华1,*,王霞2,李庭锋1,张林1   

  1. 1东北农业大学,黑龙江哈尔滨150030;2黑龙江八一农垦大学,黑龙江大庆163319
  • 收稿日期:2009-06-04 修回日期:2009-09-08 出版日期:2010-01-12 网络出版日期:2009-11-17
  • 通讯作者: 王振华, E-mail: zhenhuawang_2006@163.com
  • 基金资助:

    本研究由国家自然科学基金项目(30571166),黑龙江博士后科研启动资金(LBH-Q06099)和黑龙江省研究室创新科研基金资助。

Primary Mapping of QTL for Dehydration Rate of Maize Kernal after Physiologyical Maturing

LIU Xian-Jun1,WANG Zhen-Hua1,*,WANG Xia2,LI Ting-Feng1,ZHANG Lin1   

  1. 1Northeast Agricultural University,Harbin 15030,China;2Heilongjiang Bayi Agricultural University,Daqing 163319,China
  • Received:2009-06-04 Revised:2009-09-08 Published:2010-01-12 Published online:2009-11-17
  • Contact: WANG Zhen-Hua, E-mail: zhenhuawang_2006@163.com

摘要:

846 (脱水快,1.18% d-1)和掖3189 (脱水慢,0.39% d-1)为亲本衍生出的232个重组自交系(F7)为作图群体,构建了具有101SSR标记位点的玉米遗传连锁图谱,覆盖玉米基因组1 941.7 cM,标记间平均距离为19.22 cM。通过12点试验(双城和哈尔滨,2007)评价了232个重组自交系籽粒生理成熟后的自然脱水速率。采用WinQTL2.5对该性状数量性状位点(QTL)进行了初步定位和遗传效应分析,结果共检测出9个显著影响玉米籽粒生理成熟后自然脱水速率的QTL,分别位于第23456染色体上,加性增效作用均来源于亲本吉846。其中在第26染色体上的2QTL (qKdr-2-1, qKdr-6-1)2个环境下均稳定表达,分别位于SSR标记bnlg198-umc1516phi126-phi077之间,其累积表型贡献率为15.49%。具有较快脱水速率的等位基因均来自吉846。所检测到的QTL将在分子辅助选育具有较快脱水速率的材料中具有较大的应用潜力。

关键词: 玉米, 重组自交系, 脱水速率, SSR标记, 数量选择基因位点

Abstract:

The aim of this study was to identify QTL for dehydration rate of maize kernel after physiological maturing using 232 recombinant inbred lines derived from a cross between line Ji846 (more faster kernel dehydration rate, 1.18% d-1) and line Ye3189 (more slower kernel dehydration rate, 0.39% d-1). Dehydration rate of maize kernel of this population and two parents were evaluated according to the method of Wang et al.(2001) and Jin et al. (1997) at tested locations Shuangcheng and Harbin in 2007, respectively. A molecular genetic map including 10 linkage groups was constructed, covering 1 941.7 cM with mean distance 19.22 cM using 101 SSR markers. A total of nine QTLs were identified through software WinQTL2.5, which were located on chromosomes 2, 3, 4, 5 and 6, respectively. Additive effect of these QTLs was derived from line Ji846. Of them, two QTLs (qKdr-2-1 located in bnlg198-umc1516 of chromosomes 2, qKdr-6-1 located in phi126-phi077 of chromosomes 6) were repeatedly found in two environments, which explained 15.49% of total phenotypic variation. Since beneficial alleles were from line Ji846it was concluded that these QTLs would have the greatest potential value for marker assisted selection for high kernel dehydration rate of maize after physiological maturing.

Key words: Maize, Recombination inbred line, Kernal dehydration rate, SSR, QTL

[1] Jiang Y-X(姜艳喜), Wang Z-H(王振华), Jin Y(金益), Zhang L(张林), E W-D(鄂文弟). Genetics on water content at harvesting and correlative traits and breeding strategy. Maize Sci (玉米科学), 2004, 12(1): 21-25 (in Chinese with English abstract)

[2] Purdy J D, Crane P L. Inheritance of drying rate immature corn. Crop Sci, 1967, 7: 294-297

[3] Gu S-Y(谷思玉), Wang Y-S(王云生), Qi G-X(齐玫馨). Correlation analysis of dehydration rate of kernel in maize physiological mature. Seed World(种子世界), 1999, (4): 19-21 (in Chinese)

[4] Zhang L(张林), Wang Z-H(王振华), Jin Y(金益), Yu T-J(于天江). Combining ability analysis of water content in harvest stage in corn. Southwest China Agric Sci (西南农业学报), 2005, 18(5): 534-537 (in Chinese with English abstract)

[5] Huo S-P(霍仕平), Yan Q-J(晏庆九). Significance and research advance of grain moisture quick-loss after physiological maturity in maize. Sichuan Agric Univ(四川农业大学学报), 1993, 11(4): 626-629 (in Chinese)

[6] Frary A, Nesbitt T C, Grandillo S, can de Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert K, Tanksley S. Cloning and transgenic expression of fw-2: A quantitative traits locus key to the evolution of tomato. Fruit Sci, 2000, 89: 85-87

[7] Lan J-H(兰进好), Li X-H(李新海), Gao S-R(高树仁), Zhang B-S(张宝石), Zhang S-H(张世煌). QTL analysis of yield components in maize under different environments. Acta Agron Sin (作物学报), 2005, 31(10): 1253-1259 (in Chinese with English abstract)

[8] Liu L-F(刘立峰), Li Z-C(李自超), Mu P(穆平). Advances in crop molecular breeding based on QTL. Mol Plant Breed (分子植物育种), 2004, 2(1): 77-83 (in Chinese with English abstract)

[9] Rodrigo G S, Fernando H A, Elsa L C, Julio C C. Quantitative trait loci for grain moisture at harvest and field grain drying rate in maize (Zea mays L.) Theor Appl Genet, 2006, 112: 462-471

[10] Jin Y(金益), Wang Z-H(王振华), Zhang Y-L(张永林), Wang S-H(王殊华), Wang Y-S(王云生). Difference analysis on the natural dry rate of kernel after wax ripening in maize hybrids. Northeast Agric Univ (东北农业大学学报), 1997, 28(1): 29-32 (in Chinese with English abstract)

[11] Wang Z-H(王振华), Zhang Z-C(张忠臣), Chang H-Z(常华章), Jin Y(金益), Wang L-F(王立丰). Analysis of physiological mature stage and kernel naturally dry-down rate in 38 corn inbred lines in Heilongjiang. Maize Sci (玉米科学), 2001, 9(2): 53-55 (in Chinese with English abstract)

[12] Sahai Maroof M A, Biyashev R M, Yang G P. Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal location and population dynamics. Proc Natl Acad Sci USA, 1994, 91: 5466-5470

[13] Senior L M, Manfred H. Mapping maize microsatellites and polymerase chain reaction confirmation of the targeted repeats using a CT primer. Genome, 1993, 36: 884-889

[14] Yang J-P(杨俊品), Rong T-Z(荣延昭), Huang L-J(黄烈健) , Tang H-T(唐海涛) , Xiang D-Q(向道权), Dai J-R(戴景瑞). Construction of the frame molecular linkage map in maize. Acta Agron Sin (作物学报), 2004, 30(1): 82-87 (in Chinese with English abstract)

[15] Doerge R W, Churchill G A. Permutation tests for multiple loci affecting a quantitative character. Genetics, 1996, 142: 285-294

[16] McCouch S R, Cjp Y G, Yano M. Report on QTL nomenclature. Rice Cenet Newsl, 1997, 14: 11-13

[17] Zhang Z-M(张志明), Zhao M-J(赵茂俊), Rong T-Z(荣廷昭), Pan G-T(潘光堂). SSR Linkage map construction and QTL identification for plant height and ear height in maize (Zea mays L.). Acta Agron Sin(作物学报), 2007, 33(2): 341-344 (in Chinese with English abstract)

[18] Li Z K, Yu S B, Lafitte H R, Huang N, Courtois B, Hittalmani S, Vijayakumar C H M, Liu G F, Wang G C, Shashidhar H E, Zhuang J Y, Zheng K L, Singh V P, Sidhu J S, Srivantaneeyakul S, Khush G S. QTL × environment interactions in rice: I. Heading date and plant height. Theor Appl Genet, 2003, 108: 141-153

[19] Tuberosa R, Salvi S, Sanguineti M C, Landi P, Maccaferri M, Conti S. Mapping QTL regulating morpho-physiological traits and yield: case studies, shortcomings and perspectives in drought-stressed maize. Ann Bot, 2002, 89: 941-963

[20] Tang H(汤华), Yan J-B(严建兵), Huang Y-Q(黄益勤), Zheng Y-L(郑用琏), Li J-S(李建生). QTL mapping of five agronomic traits in maize.Acta Genet Sin (遗传学报), 2005, 32(2): 203-209 (in Chinese with English abstract)

[21] Zhao M-J(赵茂俊), Zhang Z-M(张志明), Gao S-B(高世斌), Li W-C(李晚忱), Rong Y-Z(荣廷昭), Pan G-T(潘光堂). Identification of quantitative trait loci controlling resistance to banded leaf-sheath blight in maize. Acta Agron Sin (作物学报), 2006, 32(5): 698-702 (in Chinese with English abstract)

[22] Lü X-L(吕香玲), Li X-H(李新海), Hao Z-F(郝转芳), Ji H-L(吉海莲), Shi L-Y(史利玉), Zhang S-H(张世煌). Identification of major QTL for resistance to sugarcane mosaic virus in maize based on introgression lines analysis. Maize Sci (玉米科学), 2007, 15(3): 9-14 (in Chinese with English abstract)

[23] Shen J-B(申建斌), Jiang C-S(蒋昌顺). Application and limiting factors and improvement of crop QTL mapping. Chin Trop Agric (热带农业科学), 2006, 26(4): 59-63 (in Chinese with English abstract)
Knapp S J , Bridges W C, Birkes D. Mapping quantitative trait loci using molecular maker linkage maps. Theor Appl Genet, 1990, 79: 583-592
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!