欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (1): 70-80.doi: 10.3724/SP.J.1006.2019.82036

• 耕作栽培·生理生化 • 上一篇    下一篇

绿色超级稻品种的农艺与生理性状分析

许阳东,朱宽宇,章星传,王志琴,杨建昌()   

  1. 扬州大学江苏省作物遗传生理国家重点实验室培育点 / 粮食作物现代产业技术协同创新中心, 江苏扬州 225009
  • 收稿日期:2018-07-08 接受日期:2018-10-08 出版日期:2018-11-08 网络出版日期:2018-11-08
  • 通讯作者: 杨建昌
  • 基金资助:
    本研究由国家高技术研究发展计划项目(863计划)(2014AA10A600);国家自然科学基金项目(31461143015);江苏高校优势学科建设工程项目(PAPD);扬州大学高端人才支持计划项目资助(2015-01)

Analysis in agronomic and physiological traits of green super rice

Yang-Dong XU,Kuan-Yu ZHU,Xing-Chuan ZHANG,Zhi-Qin WANG,Jian-Chang YANG()   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2018-07-08 Accepted:2018-10-08 Published:2018-11-08 Published online:2018-11-08
  • Contact: Jian-Chang YANG
  • Supported by:
    This study was supported by the National High Technology Research and Development Program of China(2014AA10A600);the National Natural Science Foundation of China(31461143015);the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD);the Top Talent Supporting Program of Yangzhou University(2015-01)

摘要:

探明绿色超级稻的农艺与生理性状, 对于培育和选用绿色超级稻品种有重要意义。本研究以4个绿色超级稻品种为材料, 1个超级稻品种和1个非超级稻品种为对照, 观察了绿色超级稻的农艺与生理表现。结果表明, 与对照品种相比, 绿色超级稻品种具有较高的产量和氮素利用效率。绿色超级稻品种较高的产量得益于总颖花数和结实率的同步提高, 较高的氮素利用率主要在于较高的植株氮素籽粒生产效率(氮素内部利用效率)。绿色超级稻具有较高的茎蘖成穗率和粒叶比, 抽穗期较高的糖花比, 灌浆期较高的作物生长速率、净同化率、根系氧化力和茎中同化物向籽粒的运转率和成熟期较高的收获指数。这些性状与产量及植株氮素籽粒生产效率均呈极显著的正相关。建议将上述性状作为培育和选用绿色超级稻品种的参考指标。

关键词: 绿色超级稻, 产量, 植株氮素籽粒生产效率, 群体质量, 生理性状

Abstract:

Understanding agronomic and physiological characteristics of green super rice (GSR) is essential to make strategies for breeding GSR varieties and crop management. This study aimed to identify major agronomic and physiological traits associated with high grain yield and high nitrogen use efficiency (NUE) of rice. Four GSR varieties and two control varieties (one super rice variety and one non-super rice inbred) were grown in the paddy field. The results showed that the GSR varieties produced higher grain yield and higher NUE than control varieties. Synchronous increases in both total spikelet number and filled-grain percentage contributed to higher grain yield, and an increase in grain yield production per unit absorbed N (internal NUE) resulted in higher NUE for GSR. Compared with control varieties, GSR varieties exhibited greater percentage of productive tillers and the ratio of spikelet number to leaf area, higher ratio of sugar amount to spikelet number at the heading time, higher crop growth rate, net assimilate rate, and root oxidation activity and more remobilization of assimilates from stems and sheaths to grains during the grain filling period, and higher harvest index at maturity. These traits were positively and very significantly correlated with both grain yield and internal NUE, and could be used as indexes for breeding and selecting GSR varieties.

Key words: green super rice (GSR), grain yield, internal nitrogen use efficiency, population quality, physiological trait

表1

绿色超级稻品种的产量及其构成因素"

年/品种
Year/variety
产量
Grain yield
(t hm-2)
穗数
Panicle number (m2)
每穗粒数
Spikelets per panicle
总颖花数
Total spikelets
(×103 m-2)
结实率
Seed-setting rate (%)
千粒重
1000-grain weight (g)
2016
扬粳4038 YJ-4 (CK1) 8.75 b 263 b 141 a 37.1 cd 85.8 c 28.5 bc
武运粳24 WYJ-24 9.81 a 288 a 139 a 40.0 b 88.4 b 27.4 f
连粳7号 LJ-7 9.43 b 310 a 124 b 38.4 c 90.9 a 27.6 ef
宁粳1号 NJ-1 (CK2) 8.68 b 299 a 122 b 36.5 d 85.4 c 28.0 de
淮稻13 HD-13 9.78 a 266 b 142 a 37.8 c 88.4 b 29.2 a
武运粳30 WYJ-30 9.86 a 288 a 146 a 42.0 a 87.6 b 27.9 de
2017
扬粳4038 YJ-4 (CK1) 9.05 b 261 b 143 a 37.3 cd 84.8 c 28.7 b
武运粳24 WYJ-24 9.61 a 292 a 137 a 40.0 b 88.8 b 27.6 ef
连粳7号 LJ-7 9.69 a 314 a 122 b 38.3 c 91.3 a 27.4 f
宁粳1号 NJ-1 (CK2) 8.62 b 297 a 124 b 36.8 d 84.4 c 28.2 cd
淮稻13 HD-13 9.88 a 268 b 144 a 38.6 c 88.0 b 29.4 a
武运粳30 WYJ-30 9.94 a 292 a 142 a 41.5 a 87.4 b 27.7 ef
方差分析 Analysis of variance
FF for year (Y) NS NS NS NS NS NS
品种FF for variety (V) 15.7** 11.8** 8.65** 20.7** 10.2** 3.67*
年×品种FF for Y × V NS NS NS NS NS NS

表2

绿色超级稻品种的氮素吸收量和氮利用率"

年/品种
Year/variety
总吸氮量
Total N uptake
(kg hm-2)
植株氮素籽粒生产效率
Internal N use efficiency
(kg kg-1 N)
每百kg籽粒的需氮量
N uptake per 100 kg grain
[kg (100 kg)-1 grain]
氮肥偏生产力
Patial factory
productivity
(kg kg-1)
2016
扬粳4038 YJ-4 (CK1) 190 a 46.1 b 2.17 a 43.8 b
武运粳24 WYJ-24 191 a 50.6 a 1.98 b 49.1 a
连粳7号 LJ-7 188 a 50.2 a 1.99 b 47.2 a
宁粳1号 NJ-1 (CK2) 192 a 45.2 b 2.21 a 43.4 b
淮稻13 HD-13 191 a 51.2 a 1.95 b 48.9 a
武运粳30 WYJ-30 194 a 51.4 a 1.95 b 49.3 a
2017
扬粳4038 YJ-4 (CK1) 194 a 46.6 b 2.14 a 45.3 b
武运粳24 WYJ-24 195 a 50.1 a 2.00 b 48.1 a
连粳7号 LJ-7 192 a 50.5 a 1.98 b 48.5 a
宁粳1号 NJ-1 (CK2) 190 a 45.4 b 2.20 a 43.1 b
淮稻13 HD-13 193 a 51.2 a 1.95 b 49.4 a
武运粳30 WYJ-30 192 a 51.2 a 1.95 b 49.7 a
方差分析 Analysis of variance
FF for year (Y) NS NS NS NS
品种FF for variety (V) NS 8.48** 8.04** 15.27**
年×品种FF for Y × V NS NS NS NS

表3

绿色超级稻品种茎蘖成穗率(PPST)、叶面积指数(LAI)和粒叶比"

年/品种
Year/variety
茎蘖成穗率
PPST
(%)
抽穗期LAI
LAI at heading
(m2 m-2)
颖花/叶面积
Spikelet/LA
(spikelets cm-2)
实粒/叶面积
Filled grain/LA
(grains cm-2)
总粒重/叶面积
Total grain Wt/LA
(mg cm-2)
2016
扬粳4038 YJ-4 (CK1) 71.3 b 7.15 a 0.519 cd 0.445 b 12.2 b
武运粳24 WYJ-24 79.2 a 7.32 a 0.546 ab 0.487 a 13.4 a
连粳7号 LJ-7 76.8 a 6.95 a 0.553 ab 0.501 a 13.6 a
宁粳1号 NJ-1 (CK2) 72.3 b 7.03 a 0.519 cd 0.443 b 12.3 b
淮稻13 HD-13 78.5 a 6.86 a 0.551 ab 0.484 a 14.3 a
武运粳30 WYJ-30 80.9 a 7.38 a 0.569 a 0.501 a 13.4 a
2017
扬粳4038 YJ-4 (CK1) 73.7 b 7.27 a 0.513 d 0.435 b 12.4 b
武运粳24 WYJ-24 78.2 a 7.24 a 0.552 ab 0.487 a 13.3 a
连粳7号 LJ-7 78.4 a 7.09 a 0.540 bc 0.495 a 13.7 a
宁粳1号 NJ-1 (CK2) 71.3 b 7.29 a 0.505 d 0.426 b 11.8 b
淮稻13 HD-13 79.7 a 7.04 a 0.548 ab 0.491 a 14.0 a
武运粳30 WYJ-30 79.5 a 7.24 a 0.573 a 0.499 a 13.7 a
方差分析 Analysis of variance
FF for year (Y) NS NS NS NS NS
品种FF for variety (V) 6.85** NS 5.76** 11.5** 7.63**
年×品种F F for Y × V NS NS NS NS NS

表4

绿色超级稻品种的地上部分干重和作物生长速率(CGR)"

年/品种
Year/variety
干物质重 Biomass (t hm-2) 作物生长速率 CGR (g m-2 d-1)
分蘖期
Tillering (T)
拔节期
Jointing (J)
抽穗期
Heading (H)
成熟期
Maturity (M)
分蘖-拔节
T-J
拔节-抽穗
J-H
抽穗-成熟
H-M
2016
扬粳4038 YJ-4 (CK1) 0.64 e 3.51 a 9.72 a 15.4 cd 13.1 c 17.8 a 12.1 d
武运粳24 WYJ-24 0.72 ab 3.67 a 9.95 a 16.5 ab 13.6 ab 18.0 a 13.1 b
连粳7号 LJ-7 0.68 cd 3.55 a 9.68 a 15.9 bc 13.3 bc 17.6 a 13.1 b
宁粳1号 NJ-1 (CK2) 0.63 e 3.45 a 9.49 a 14.8 d 12.6 d 17.5 a 11.6 e
淮稻13 HD-13 0.74 a 3.68 a 9.95 a 16.5 ab 13.6 ab 17.9 a 13.7 a
武运粳30 WYJ-30 0.73 ab 3.67 a 9.89 a 16.9 a 13.5 abc 17.8 a 14.0 a
2017
扬粳4038 YJ-4 (CK1) 0.68 cd 3.57 a 9.84 a 16.0 bc 13.1 c 17.9 a 12.6 bc
武运粳24 WYJ-24 0.70 bc 3.73 a 10.0 a 16.3 ab 13.8 a 18.0 a 12.8 b
连粳7号 LJ-7 0.66 de 3.63 a 9.84 a 16.5 ab 13.5 abc 17.7 a 13.6 a
宁粳1号 NJ-1 (CK2) 0.65 de 3.37 a 9.59 a 15.6 c 12.4 d 17.8 a 12.3 cd
淮稻13 HD-13 0.70 bc 3.76 a 9.99 a 16.9 a 13.9 a 17.8 a 14.1 a
武运粳30 WYJ-30 0.75 a 3.73 a 9.99 a 16.7 a 13.5 abc 17.9 a 13.7 a
方差分析 Analysis of variance
FF for year (Y) NS NS NS NS NS NS NS
品种FF for variety (V) 4.89** NS NS 3.52* 3.46* NS 14.5**
年×品种FF for Y × V NS NS NS NS NS NS NS

表5

绿色超级稻品种绿叶面积持续期和净同化速率"

年/品种
Year/variety
绿叶面积持续期 GLAD (m2 m-2 d-1) 净同化速率 NAR (g m-2 d-1)
分蘖-拔节
T-J
拔节-抽穗
J-H
抽穗-成熟
H-M
分蘖-拔节
T-J
拔节-抽穗
J-H
抽穗-成熟
H-M
2016
扬粳4038 YJ-4 (CK1) 57.2 a 204 a 222 a 5.03 b 3.05 a 2.67 de
武运粳24 WYJ-24 55.8 a 205 a 228 a 5.36 a 3.07 a 2.81 c
连粳7号 LJ-7 55.8 a 198 a 219 a 5.24 a 3.11 a 2.94 b
宁粳1号 NJ-1 (CK2) 55.8 a 200 a 221 a 4.97 b 3.06 a 2.56 f
淮稻13 HD-13 55.3 a 197 a 217 a 5.42 a 3.18 a 3.11 a
武运粳30 WYJ-30 54.6 a 204 a 231 a 5.43 a 3.06 a 2.98 b
2017
扬粳4038 YJ-4 (CK1) 58.5 a 208 a 226 a 4.94 b 3.01 a 2.73 cde
武运粳24 WYJ-24 54.9 a 202 a 227 a 5.52 a 3.12 a 2.76 cd
连粳7号 LJ-7 55.1 a 200 a 222 a 5.39 a 3.10 a 3.00 b
宁粳1号 NJ-1 (CK2) 57.5 a 207 a 227 a 4.73 b 3.00 a 2.65 ef
淮稻13 HD-13 56.4 a 201 a 221 a 5.42 a 3.10 a 3.13 a
武运粳30 WYJ-30 56.1 a 204 a 226 a 5.31 a 3.07 a 2.97 b
方差分析 Analysis of variance
FF for year (Y) NS NS NS NS NS NS
品种FF for variety (V) NS NS NS 5.35** NS 6.64**
年×品种F F for Y × V NS NS NS NS NS NS

表6

绿色超级稻茎中非结构性碳水化合物(NSC)转运率、糖花比和收获指数"

年/品种
Year/variety
茎与鞘中NSC
NSC in stems and sheaths (g m-2)
NSC转运率
NSC remobilization
(%)
抽穗期糖花比
NSC per spikelet
at heading
(mg spikelet-1)
收获指数
Harvest
index
(×100)
抽穗期
Heading
成熟期
Maturity
2016
扬粳4038 YJ-4 (CK1) 194 de 138 cd 28.9 b 5.23 b 48.9 cd
武运粳24 WYJ-24 230 bc 143 ab 37.8 a 5.75 a 51.1 a
连粳7号 LJ-7 229 bc 136 cd 40.6 a 5.96 a 51.0 a
宁粳1号 NJ-1 (CK2) 190 e 133 de 30.0 b 5.21 b 49.4 c
淮稻13 HD-13 225 c 131 e 41.8 a 5.95 a 50.6 ab
武运粳30 WYJ-30 245 a 140 bc 42.9 a 5.83 a 50.2 b
2017
扬粳4038 YJ-4 (CK1) 198 d 140 bc 29.3 b 5.31 b 48.6 d
武运粳24 WYJ-24 234 b 145 a 38.0 a 5.85 a 50.7 ab
连粳7号 LJ-7 233 b 140 bc 39.9 a 6.08 a 50.5 ab
宁粳1号 NJ-1 (CK2) 188 e 129 e 31.4 b 5.11 b 48.5 d
淮稻13 HD-13 223 c 129 e 42.2 a 5.78 a 50.8 ab
武运粳30 WYJ-30 241 a 138 cd 42.7 a 5.81 a 51.2 a
方差分析 Analysis of variance
FF for year (Y) NS NS NS NS NS
品种FF for variety (V) 11.5** 5.21** 10.4** 11.2** 12.6**
年×品种F F for Y × V NS NS NS NS NS

图1

绿色超级稻抽穗期根干重(A, B)和根冠比(C, D)及灌浆期根系氧化力(E, F) 不同字母者表示在P = 0.05水平上差异显著, NS表示在P = 0.05水平上差异不显著, 同一测定时期、不同品种间比较。YJ-4: 扬粳4038; WYJ-24: 武运粳24; LJ-7: 连粳7号; NJ-1: 宁粳1号; HD-13: 淮稻13; WYJ-30: 武运粳30; EGF: 灌浆早期; MGF: 灌浆中期; LGF: 灌浆后期。"

图2

水稻灌浆期根系氧化力(ROA)与灌浆期作物生长速率(A)、灌浆期净同化率(B)和结实率(C)的关系 图中数据来自表1、表4、表5和图1; **表示在P = 0.01水平上显著(n = 12)"

表7

水稻部分农艺生理性状与产量及植株氮素籽粒生产效率(IEN)的相关系数(r)"

性状
Trait
r
产量 Grain yield IEN
茎蘖成穗率 Percentage of productive stems and tillers 0.99** 0.97**
抽穗期糖花比 Sugar-spikelet ratio at heading time 0.89** 0.93**
颖花/叶面积 (粒叶比) Spikelets/leaf area (grain-leaf ratio) 0.90** 0.92**
灌浆期作物生长速率 Crop growth rate during grain filling 0.91** 0.92**
灌浆期净同化速率 Net assimilate rate during grain filling 0.85** 0.88**
灌浆期根系氧化力 Root oxidation activity during grain filling 0.91** 0.90**
茎中同花物转运率 Percentage of assimilate remobilization from stems 0.92** 0.96**
收获指数 Harvest index 0.88** 0.89**
[1] FAOSTAT. FAO Statistical Databases, Food and Agriculture Organization (FAO) of the United Nations, Rome, 2016. . FAO Statistical Databases, Food and Agriculture Organization (FAO) of the United Nations, Rome, 2016. .
[2] 余四斌, 熊银, 肖景华, 罗利军, 张启发 . 杂交稻与绿色超级稻. 科学通报, 2016,61:3797-3803.
doi: 10.1360/N972016-01092
Yu S B, Xiong Y, Xiao J H, Luo L J, Zhang Q F . Hybrid rice and green super rice. Chin Sci Bull, 2016,61:3797-3803 (in Chinese with English abstract).
doi: 10.1360/N972016-01092
[3] Peng S B, Tang Q Y, Zou Y B . Current status and challenges of rice production in China. Plant Prod Sci, 2009,12:3-8.
doi: 10.1626/pps.12.3
[4] 张启发 . 资源节约型、环境友好型农业生产体系的理论与实践. 北京: 科学出版社, 2015. pp 1-15.
Zhang Q F. Theory and Practice of Resource-saving and Environment-friendly Agricultural Production System. Beijing: Science Press, 2015. pp 1-15(in Chinese).
[5] Zhang Q F . Strategies for developing green super rice. Proc Natl Acad Sci USA, 2007,104:16402-16409.
doi: 10.1073/pnas.0708013104
[6] 张启发 . 绿色超级稻的构想与实践. 北京: 科学出版社, 2010. pp 1-32.
Zhang Q F. Strategies and Practice for Developing Green Super Rice. Beijing: Science Press, 2010. pp 1-32(in Chinese).
[7] Wang F, Peng S B . Yield potential and nitrogen use efficiency of China’s super rice. J Integr Agric, 2017,16:1000-1008.
doi: 10.1016/S2095-3119(16)61561-7
[8] 彭少兵 . 对转型时期水稻生产的战略思考. 中国科学: 生命科学, 2014,44:845-850.
doi: 10.1360/052014-98
Peng S B . Reflection on China’s rice production strategies during the transition period. Sci Sin Vitae, 2014,44:845-850 (in Chinese with English abstract).
doi: 10.1360/052014-98
[9] Yang J C, Liu K, Wang Z Q, Du Y, Zhang J H . Water-saving and high-yielding irrigation for lowland rice by controlling limiting values of soil water potential. J Integr Plant Biol, 2007,49:1445-1454.
doi: 10.1111/j.1672-9072.2007.00555.x
[10] Pucher G W, Leavenworth C S, Vickery H B . Determination of starch in plant tissues. Analyt Chem, 1948,20:850-853.
doi: 10.1021/ac50100a004
[11] Yoshida S, Forno D, Cock J, Gomez K . Laboratory Manual for Physiological Studies of Rice. The Philippines: International Rice Research Institute, 1976. pp 14-20.
[12] Zhang H, Xue Y G, Wang Z Q, Yang J C, Zhang J H . An alternate wetting and moderate soil drying regime improves root and shoot growth in rice. Crop Sci, 2009,49:2246-2260.
doi: 10.2135/cropsci2009.02.0099
[13] Yang J C, Zhang J H . Crop management techniques to enhance harvest index in rice. J Exp Bot, 2010,61:3177-3189.
doi: 10.1364/AO.36.000144 pmid: 20421195
[14] Wang Z Q, Zhang W Y, Beebout S S, Zhang H, Liu L J, Yang J C, Zhang J H . Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates. Field Crops Res, 2016,193:54-69.
doi: 10.1016/j.fcr.2016.03.006
[15] 张自常, 徐云姬, 褚光, 王志琴, 王学明, 刘立军, 杨建昌 . 不同灌溉方式下的水稻群体质量. 作物学报, 2011,37:2011-2019.
doi: 10.3724/SP.J.1006.2011.02011
Zhang Z C, Xu Y J, Chu G, Wang Z Q, Wang X M, Liu L J, Yang J C . Population quality of rice under different irrigation regimes. Acta Agron Sin, 2011,37:2011-2019 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2011.02011
[16] Fu J, Huang Z H, Wang Z Q, Yang J C, Zhang J H . Pre-anthesis non-structural carbohydrate reserve in the stem enhances the sink strength of inferior spikelets during grain filling of rice. Field Crops Res, 2011,123:170-182.
doi: 10.1016/j.fcr.2011.05.015
[17] Yang J C, Peng S B, Zhang Z J, Wang Z Q, Visperas R M, Zhu Q S . Grain and dry matter yields and partitioning of assimilates in japonica/indica hybrid rice. Crop Sci, 2002,42:766-772.
[18] Yang J C, Zhang J H, Wang Z Q, Zhu Q S . Hormones in the grains in relation to sink strength and postanthesis development of spikelets in rice. Plant Growth Regul, 2003,41:185-195.
doi: 10.1023/B:GROW.0000007503.95391.38
[19] 凌启鸿, 杨建昌 . 水稻群体“粒叶比”与高产栽培途径研究. 中国农业科学, 1986,19(3):1-8.
Ling Q H, Yang J C . Studies on “grain-leaf ratio” of population and cultural approaches of high yield in rice plants. Sci Agric Sin, 1986,19(3):1-8 (in Chinese with English abstract).
[20] 杨建昌 . 水稻粒叶比与产量的关系. 江苏农学院学报, 1993,14(专刊):11-14.
Yang J C . Relationship between grain-leaf ratio and grain yield of rice. J Agric Coll, 1993,14(Special issue):11-14 (in Chinese with English abstract).
[21] 凌启鸿 . 作物群体质量. 上海: 上海科学技术出版社, 2000. pp 42-216.
Ling Q H. Crop population Quality. Shanghai: Shanghai Scientific & Technical Publishers, 2000. pp 42-216(in Chinese).
[22] Yang J C . Approaches to achieve high yield and high resource use efficiency in rice. Front Agric Sci Eng, 2015,2:115-123.
doi: 10.15302/J-FASE-2015055
[23] Li H W, Liu L J, Wang Z Q, Yang J C, Zhang J H . Agronomic and physiological performance of high-yielding wheat and rice in the lower reaches of Yangtze River of China. Field Crops Res, 2012,133:119-129.
doi: 10.1016/j.fcr.2012.04.005
[24] Kato T, Takeda K . Associations among characters related to yield sink capacity in space-planted rice. Crop Sci, 1996,36:1135-1139.
doi: 10.2135/cropsci1996.0011183X003600050011x
[25] Fageria N K . Yield physiology of rice. J Plant Nutr, 2007,30:843-879.
doi: 10.1080/15226510701374831
[26] Yang J C, Zhang H, Zhang J H . Root morphology and physiology in relation to the yield formation of rice. J Integr Agric, 2012,11:920-926.
doi: 10.1016/S2095-3119(12)60082-3
[27] Chu G, Chen T T, Wang Z Q, Yang J C, Zhang J H . Morphological and physiological traits of roots and their relationships with water productivity in water-saving and drought-resistant rice. Field Crops Res, 2014,162:108-119.
doi: 10.1016/j.fcr.2014.06.026
[28] Osaki M, Shinano T, Matsumoto M, Zheng T, Tadano T . A root-shoot interaction hypothesis for high productivity of field crops. Soil Sci Plant Nutr, 1997,37:445-454.
doi: 10.1007/978-94-009-0047-9_215
[29] Samejima H, Kondo M, Ito O, Nozoe T, Shinano T, Osaki M . Root-shoot interaction as a limiting factor of biomass productivity in new tropical rice lines. Soil Sci Plant Nutr, 2004,50:545-554.
doi: 10.1080/00380768.2004.10408511
[30] Yang J C, Zhang J H . Grain-filling problem in “super” rice. J Exp Bot, 2010,61:1-5.
doi: 10.1093/jxb/erp348
[31] Zhang Z J, Chu G, Liu L J, Wang Z Q, Wang X M, Zhang H, Yang J C, Zhang J H . Mid-season nitrogen application strategies for rice varieties differing in panicle size. Field Crops Res, 2013,150:9-18.
doi: 10.1016/j.fcr.2013.06.002
[32] Ju C X, Buresh R J, Wang Z Q, Zhang H, Liu L J, Yang J C, Zhang J H . Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Res, 2015,175:47-59.
doi: 10.1016/j.fcr.2015.02.007
[33] Chu G, Wang Z Q, Zhang H, Yang J C, Zhang J H . Agronomic and physiological performance of rice under integrative crop management. Agron J, 2016,108:117-128.
doi: 10.2134/agronj15.0310
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[12] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[13] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[14] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[15] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!