欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (4): 556-567.doi: 10.3724/SP.J.1006.2019.82041

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻短根白化突变体sra1生理生化分析及基因定位

张莉莎,米胜南,王玲,委刚,郑尧杰,周恺,尚丽娜,朱美丹,王楠()   

  1. 西南大学水稻研究所 / 西南大学农业科学研究院, 重庆 400715
  • 收稿日期:2018-07-29 接受日期:2018-12-24 出版日期:2019-04-12 网络出版日期:2019-01-07
  • 通讯作者: 王楠
  • 基金资助:
    本研究由国家自然科学基金项目(31771750);重庆市基础研究与前沿探索项目(cstc2018jcyjAX0424)

Physiological and biochemical analysis and gene mapping of a novel short radicle and albino mutant sra1 in rice

ZHANG Li-Sha,MI Sheng-Nan,WANG Ling,WEI Gang,ZHENG Yao-Jie,ZHOU Kai,SHANG Li-Na,ZHU Mei-Dan,WANG Nan()   

  1. Rice Research Institute, Southwest University / Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
  • Received:2018-07-29 Accepted:2018-12-24 Published:2019-04-12 Published online:2019-01-07
  • Contact: Nan WANG
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31771750);Basic Research and Frontier Exploration Projects of Chongqing City(cstc2018jcyjAX0424)

摘要:

叶色突变体是研究光合作用及叶绿素合成与降解途径的理想材料, 有助于了解高等植物叶绿体发育和光合作用的调控机制。利用甲基磺酸乙酯(EMS)处理西农1B, 获得一个短根白化突变体sra1 (short radicle and albino 1), 从出芽至第三叶期叶片始终为白色, 胚根较同时期野生型明显变短。对相同位置的叶片观察发现, 西农1B叶肉细胞叶绿体含量丰富且膜系统发育完整, 而sra1叶肉细胞液泡化严重, 叶绿体数目明显减少或没有, 基粒类囊体垛叠松散且稀少。生理生化分析发现sra1叶绿素a、叶绿素b和类胡萝卜素含量接近于零, 净光合速率为负值。遗传分析表明该短根白化表型由单个隐性核基因控制, 最终将SRA1定位于水稻第3染色体长臂InDel标记Z-20和Z-42间, 物理距离约657 kb, 是一个未报道的新基因。

关键词: 水稻, 短根白化突变体, 基因定位

Abstract:

The leaf color mutant is an ideal material for studying the process of photosynthesis and the pathways of chlorophyll synthesis and degradation. Studies on rice leaf color mutants are helpful to explain the gene network of chloroplast development and photosynthesis in higher plants. The mutant sra1, derived from the progeny of EMS-treated indica rice Xinong 1B. Leaves of sra1 were white in color from budding to the third leaf, and the radicle of sra1 was significantly shorter than that of wild type in the same stage. The observation of leaves in the same position showed that in Xinong 1B, the chloroplast of mesophyllous cells was abundant and the membrane system was fully developed, while in sra1, the vacuolarization of mesophyll cells was serious, the number of chloroplasts was significantly reduced or absent, and the granule thylakoids were loosely folded. The contents of chlorophyll a, chlorophyll b, and carotenoid in sra1 were close to zero, and the net photosynthetic rate was negative. Genetic analysis indicated that the short-root and albino phenotype was controlled by a single recessive nuclear gene, and SRA1 was localized between the long-arm InDel markers Z-20 and Z-42 of rice chromosome 3. The physical distance between the two InDel markers was about 657 kb. No genes related to chloroplast and root development have been reported in this interval, indicating that sra1 is a novel mutant. The sra1 is a novel mutant with albino and accompanying short roots, suggesting that SRA1 may be involved in regulating chloroplast and root development.

Key words: rice, short radicle and albino mutant, gene mapping

表1

野生型(WT)与突变体sra1光合特性"

材料
Material
净光合速率
Net photosynthetic rate
(μmol CO2 m-2 s-1)
气孔导度
Stomatal conductance
(mol H2O m-2 s-1)
蒸腾速率
Transpiration rate
(mol H2O m-2 s-1)
胞间CO2浓度
Intercellular CO2 concentration
(μmol CO2 L-1)
WT 11.77±0.1091 0.30±0.0019 3.29±0.0090 298.44±2.9901
sra1 -3.61±0.0680** 0.18±0.0008** 1.28±0.0070** 424.52±5.7801**

附表1

编码被子植物叶绿素合成途径关键酶的基因"

编号
Code

Enzyme
基因
Gene
水稻
Rice
1 谷氨酰-tRNA合成酶 Glutamyl-tRNAsynthetase GltX AK099931
2 谷氨酰-tRNA还原酶 Glutamyl-tRNAreductase HEMA AK099393
3 谷氨酸-1-半醛转氨酶 Glutamate-1-semialdehyde aminotransferase GSA AK064826
4 5-氨基乙酰丙酸脱水酶 5-aminolevulinate dehydratase HEMB AK101836
5 羟甲基后胆色素原合酶 Hydroxymethylbilane synthase HEMC AK060914
6 尿卟啉原III合酶 Uroporphyrinogen III synthase HEMD AK107127
7 尿卟啉原III脱羧酶 Uroporphyrinogen III decarboxylase HEME AK070859
8 粪卟啉原III氧化酶 Copro-porphyrinogen III oxidase HEMF AK070391
9 原卟啉原氧化酶 Protoporphyrinogen IX oxidase HEMG AK108365
10 镁螯合酶D亚基 Mg chelatase D subunit CHLD AK072463
镁螯合酶H亚基 Mg chelatase H subunit CHLH AK067323
镁螯合酶I亚基 Mg chelatase I subunit CHLI AK060389
11 镁原卟啉IX甲基转移酶 Mg-protoporphyrin IX methyltransferase CHLM AK059151
12 镁原卟啉 IX单甲酯环化酶 Mg-protoporphyrinogen IX monomethylester cyclase CHL27 AK069333
13 二乙烯还原酶 3,8-divinyl reductase protochlorophyll a-8-vinyl reductase DVR AK103940
14 原叶绿素酸酯氧化还原酶 Protochlorophyllide oxidoreductase POR AK068143
15 叶绿素合酶 Chlorophyll synthase CHLG AK068855
16 叶绿素a加氧酶1 Chlorophyllide a oxygenase CAO1 AF284781/AK063367

附表2

用于基因定位的部分多态性引物序列"

标记
Marker
正向引物序列
Forward primer sequence (5′-3′)
反向引物序列
Reverse primer sequence (5′-3′)
Z-12 ACGCCGTCTCCTTGGTAATC CTTACATTGGAAAGCGGAGG
Z-20 TTGTAGTGCGGGCAGTTCTC GTACTGTTTGCCTCTGCTTGC
Z-42 CCTTAATCTTGTCGCACAAC GCTTCTCTCCATCAACCATAT
Z-78 ACGCAGGAGAAGCTAGATAGG AACCATCTTTTAGTGTCGGGT
Z-83 TACCCTTGGAGCACATATAGTTAA TTGGTCACCAACATATCTTGAA
Z-112 GGCTCTGCTAGCGAAATACTAG GCTCACCATACTCACCAATTACT
ZMD5-18 TCAGGTCTTACGACGGTATGG GGACACACTAGAATCTACGCACG
ZMD5-44 GAAGCTATTAGCCGGGATCG GCCAAGGCAAAGCTCTCTT
ZTQ43 TGCAGAGACAAGGAAGCGG TCCTGATCGTTGAGCAGGC
RM8208 TGTAAATGCCTGAGTGCCTACCC AGCTAAACCGCTAGGGCCTTCC
RM3400 GGGTGCACCTTTGTATCTGTGC TGACAGAGGTAAAGCAGCAGTAGTCG
RM15177 TCCTGTGTTGGACGGAGTATGC GCCTCAGAGGTTAGAAGACAGACAGC
RM405 TATGCTTTCTGTCAGCTTCC CTGCTGTGAAAGAGTTGACG
RM18053 GAGACCAGAGGGAGACAAAGAGAGG CTTAGGTCTCCCGACAGTCACG

附表3

定量PCR的相关基因描述"

基因
Gene
基因产物
Product
RAP位点
RAP_locus
OsPOLP PolI-like DNA polymerase, plastidal DNA polymerase 1 Os08g0175300
FtsZ Plastid division protein FtsZ1 Os04g0665400
OsRPOTP RNA polymerase Os06g0652000
RpoB RNA polymerase beta subunit CAA33986
V2 Virscent 2 Os03g0320900
V3 Virscent 3 Os06g0168600
HEMA1 Glutamyl-tRNA reductase 1 Os10g0502400
HEMD Uroporphyrinogen-III synthase Os03g0186100
CHLD Magnesium chelatase subunit Os03g0811100
CHLM Mg-protoporphyrin IX methyltransferase Os06g0132400
CAO1 Chlorophyll a oxygenase 1 Os10g0567400
PSY1 Phytoene Synthase 1 Os06g0729000
PSY2 Phytoene synthase 2 Os12g0626400
carb1R Chlorophyll A/B binding protein 1R Os09g0346500
carb2R Chlorophyll A/B binding protein 2R Os01g0600900
petA petA, cytochrome f CAA33961
petB petB, cytochrome B6 CAA33977
psaA psaA, PSI P700 apoprotein A1 CAA33996
psbA psbA, PSII 32 kDa protein CAA34007
RbcL RbcL, Ribulose bisphosphate carboxylase large chain CAA34004
RbcS Rubisco small subunit Os12g0274700

附表4

用于定量的引物序列"

基因
Gene
正向引物
Forward sequence (5′-3′)
反向引物
Reverse sequence (5′-3′)
Actin GACCCAGATCATGTTTGAGACCT CAGTGTGGCTGACACCATCAC
OsPOLP ACCGGTGCTTTCAGGCTTG GCTGACTGATAATCACACG
FtsZ AAAGGACATAACCTTGCAAG AGTTTTCCTATTGAACCGTG
OsRPOTP TCCTCATGTCGAGCAAGGAT GAAAGAATGTCTGGACTTTG
RpoB TATGGTCTAATTCCGAGCGGT TATGGTCTAATTCCGAGCGG
V2 GAGGAGTTCCTCACGATGAT AGCATCAATGATAGACTCC
V3 GTTAGATGCTTCACTACACAG GTACCATTGCCAACATGGCAAC
HEMA1 CGCTATTTCTGATGCTATGGGT TCTTGGGTGATGATTGTTTGG
HEMD AGGGATGGAAGGCTGCTGGA CAGTGGTCCTTGGAAGCTCTG
CHLD GCTTGCAGAAAGCTACACAAGC AGGCCGTGAGCTAAAGGAGA
CHLM CCATCCATTGGTCTCCTTATGACA GTAGCCTACTTACCATCAATGAGTC
CAO1 GACACCTTCATCTGGGCTTCAA CGAGAGACATCCGGTAGAGC
PSY1 GTGACCGAGCTCAGCCAG TTAATCGGAAGGCAGATGCT
PSY2 GGGCGTTGCGCATCTAGA CAAGAAATCGTGCGAAATCA
carb1R AGATGGGTTTAGTGCGACGAG TTTGGGATCGAGGGAGTATTT
carb2R TGTTCTCCATGTTCGGCTTCT GCTACGGTCCCCACTTCACT
petA TGAATGTGGGTGCTGTTCTTATTT TCGGGCGGCGCTAAT
petB TCCTCGGTTCAATACATAATGACCG CGTGCAGGATCATCATTAGAACCA
psaA GCGAGCAAATAAAACACCTTTC GTACCAGCTTAACGTGGGGAG
psbA CCCTCATTAGCAGATTCGTTTT ATGATTGTATTCCAGGCAGAGC
RbcL CTTGGCAGCATTCCGAGTAA ACAACGGGCTCGATGTGATA
RbcS TCCGCTGAGTTTTGGCTATTT GGACTTGAGCCCTGGAAGG

图1

野生型(WT)和sra1表型特征 A~C: 萌发3 d野生型和sra1植株; D: 萌发10 d野生型和sra1植株; E: 萌发20 d野生型和sra1植株; 标尺: ABC中标尺为1 cm, DE中标尺为2 cm。"

图2

野生型(WT)和sra1突变体根系长度变化 A: 萌发3 d野生型和sra1植株根系; B: 萌发10 d野生型和sra1植株根系; C: 萌发20 d野生型和sra1植株根系; D~G: 萌发10 d野生型和sra1胚根中部; 标尺: 标尺在ABC中为1 cm, DE中为0.5 cm, FG中为0.1 cm。H: 野生型和sra1植株胚根长度; I: 野生型和sra1植株胚根中部侧根长度; J: 野生型和sra1植株侧根密度。*显著差异(P < 0.005)。"

图3

野生型(WT)与sra1叶绿体透射电镜观察 1: 叶绿体; 2: 液泡; 3: 基粒; 4: 类囊体; 5: 间质类囊体。A~C: 野生型植株叶绿体透射电镜分析; D~F: sra1植株叶绿体透射电镜分析; 标尺: A, D中标尺为2 μm; B, E中标尺为500 nm; C, F中标尺为200 nm。"

图4

野生型(WT)和sra1突变体光合色素含量"

图5

野生型(WT)与突变体sra1叶绿素荧光参数 A: 暗适应条件下野生型和sra1最大荧光量Fm和最小荧光量Fo; B: 光适应条件下野生型和sra1最大荧光量Fm′和最小荧光量Fo′。"

图6

野生型(WT)和sra1中SOD、POD、CAT活性和MDA含量** 在0.001水平上显著差异。**Significantly different at P < 0.001."

图7

SRA1基因在第3染色体上的基因定位图谱 图中的粗黑线代表染色体, 线上方标记的是基因定位使用的SSR标记, 线下方数值代表两标记间的遗传距离, n为F2定位群体总株数。"

图8

野生型(WT)和sra1突变体相关基因的表达 A: 野生型和sra1植株叶绿体早期发育部分基因OsPOLP、FtsZ、OsRpoTp、Rpob、V2、V3表达量; B: 野生型和sra1植株光合色素合成部分基因HEMA1、HEMD、CHLD、CHLM、CAO1、PSY1、PSY2 表达量; C: 野生型和sra1植株光合作用部分基因RbcL、RbcS、Cab1R、Cab2R、PsaA、PsbA、PetA、PetB表达量。"

[1] Dario L . Chloroplast research in the genomic age. Trends Genet, 2003,19:47-56.
doi: 10.1016/S0168-9525(02)00003-3 pmid: 12493248
[2] 成浩, 李素芳, 陈明, 虞富恋, 晏静, 刘益民, 陈龙安 . 安吉白茶特异性状的生理生化本质. 茶叶科学, 1999,19:87-92.
Cheng H, Li S F, Chen M, Yan F L, Qi J, Liu Y M, Chen L G . Physiological and biochemical properties of specificity of Anji white tea. Tea Sci, 1999,19:87-92 (in Chinese with English abstract).
[3] Dong H, Fei G L, Wu C Y, Wu F Q, Sun Y Y, Chen M J, Ren Y L, Zhou K N, Cheng Z J, Wang J L, Jiang L, Zhang X, Guo X P, Lei C L, Su N, Wang H, Wan J M . A rice virescent-yellow leaf mutant reveals new insights into the role and assembly of plastid caseinolytic protease in higher plants. Plant Physiol, 2013,162:1867-1880.
doi: 10.1104/pp.113.217604 pmid: 20202020202020202020202020202020202020
[4] 李育红, 王宝和, 戴正元 . 水稻叶色突变体及其基因定位、克隆的研究进展. 江苏农业科学, 2011,39(2):34-39.
Li Y H, Wang B H, Dai Z Y . Research progress of rice leaf color mutant and its gene localization and cloning. Jiangsu Agric Sci, 2011,39(2):34-39 (in Chinese with English abstract).
[5] Ishizaki Y, Tsunoyama Y, Hatano K, Ando K, Kato K, Shinmyo A, Kobori M, Takeba G, Nakahira Y, Shiina T A . Nuclear-encoded sigma factor,Arabidopsis SIG6, recognizes sigma-70 type chloroplast promoters and regulates early chloroplast development in cotyledons. Plant J, 2005,42:133-144.
doi: 10.1111/j.1365-313X.2005.02362.x pmid: 15807777
[6] Liere K, Maliga P . In vitro characterization of the tobacco rpoB promoter reveals a core sequence motif conserved between phage-type plastid and plant mitochondrial promoters. EMBO J, 1999,18:249-257.
[7] Wu H, Zhang L X . The PPR protein PDM1 is involved in the processing of rpoA pre-mRNA in Arabidopsis thaliana. Chin Sci Bull, 2010,55:3485-3489.
[8] Asakura Y, Barkan A . A CRM domain protein functions dually in group I and group II intron splicing in land plant chloroplasts. Plant Cell, 2008,19:3864-3875.
doi: 10.1105/tpc.107.055160 pmid: 18065687
[9] Zhang Z, Tan J J, Shi Z Y, Xie Q J, Xing Y, Liu C Q, Chen Q H, Zhu H T, Wang J, Zhang J L, Zhang G Q . Albino leaf1, that encodes the sole octotricopeptide repeat protein is responsible for chloroplast development. Plant Physiol, 2016,171:1182-1191.
doi: 10.1104/pp.16.00325 pmid: 27208287
[10] Liu C H, Zhu H T, Xing Y, Tan J J, Chen X H, Zhang J J, Peng H F, Xie Q J, Zhang Z M . Albino leaf 2 is involved in the splicing of chloroplast group I and II introns in rice. J Exp Bot, 2016,67:5339-5347.
doi: 10.1093/jxb/erw296 pmid: 27543605
[11] Lin Q, Jiang K, Zheng S, Chen H, Zhou X, Gong J, Xu S, Teng Y . Mutation of the rice ASL2 gene encoding plastid ribosomal protein L21 causes chloroplast developmental defects and seedling death. Plant Biol, 2015,17:599-607.
doi: 10.1111/plb.12271 pmid: 25280352
[12] Beale S I . Green genes gleaned. Trends Plant Sci, 2005,10:309-312.
[13] Bollivar D W . Recent advances in chlorophyll biosynthesis. Photosynth Res, 2006,90:173-194.
doi: 10.1007/PL00022068 pmid: 17370354
[14] Nakamura H M M, Hakata M, Ueno O, Nagamura Y, Hirochika H, Takano M, Ichikawa H . Ectopic overexpression of the transcription factor OsGLK1 induces chloroplast development in non-green rice cells. Plant Cell Physiol, 2009,50:1933-1949.
doi: 10.1093/pcp/pcp138 pmid: 19808806
[15] Stenbaek A, Jensen P E . Redox regulation of chlorophyll biosynthesis. Phytochemistry, 2010,71:853-859.
doi: 10.2307/3870056 pmid: 20417532
[16] Eckhardt U, Grimm B, Hortensteiner S . Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant Mol Biol, 2004,56:1-14.
[17] Kumar A M, Soll D . Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in Arabidopsis. Plant Physiol, 2000,122:49-56.
doi: 10.1104/pp.122.1.49 pmid: 10631248
[18] Jung K H, Hur J, Ryu C H, Choi Y, Chung Y Y, Miyao A, Hirochika H, An G . Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol, 2003,44:463-472.
doi: 10.1093/pcp/pcg064 pmid: 12773632
[19] Zhang H, Li J, Yoo J H, Yoo S C, Cho S H, Koh H J, Seo H S, Paek N C . Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol, 2006,62:325-337.
[20] Yang Y L, Xu J, Huang L C, Leng Y J, Dai L P, Rao Y C, Chen L, Wang Y Q, Tu Z J, Hu J, Ren D Y, Zhang G H, Zhu L, Guo L B, Qian Q, Zeng D . PGL, encoding chlorophyllide a oxygenase 1, impacts leaf senescence and indirectly affects grain yield and quality in rice. J Exp Bot, 2016,67:1297-1310.
doi: 10.1093/jxb/erv529 pmid: 4762379
[21] Cao Y Y, Hua D, Yang L N, Wang Z Q, Zhou S C, Yang J C . Effect of heat-stress during meiosis on grain yield of rice cultivars differing in heat-tolerance and its physiological mechanism. Acta Agron Sin, 2008,34:2134-2142.
doi: 10.1016/S1875-2780(09)60022-5
[22] Fang J, Chai C, Qian Q, Li C, Tang J, Sun L, Huang Z, Guo X, Sun C, Liu M . Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice. Plant J, 2008,54:177-189.
[23] Cheng H, Chen M, Yu F L, Li S F . The variation of pigment-protein complexes in the albescent stage of tea. Plant Physiol, 2000,36:300-304.
[24] 洪建, 徐颖, 徐正 . 植物病毒侵染寄主叶绿体的形态结构变化. 电子显微学报, 2000,19:335-336
Hong J, Xu Y, Xu Z . Morphological changes of chloroplasts by plant vituses. Microscopy, 2000,19:335-336 (in Chinese with English abstract)
[25] Wellburn A R . The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Plant Physiol, 1994,144:307-313.
doi: 10.1016/S0176-1617(11)81192-2
[26] 简在友, 王文全, 孟丽, 许桂芳, 王秋玲, 李卫东, 俞敬波 . 芍药组内不同类群间光合特性及叶绿素荧光特性比较. 植物生态学报, 2010,34:1463-1471.
Jian Z Y, Wang W Q, Meng L, Xu G F, Wang Q L, Li W D, Yu J B . Comparison of photosynthetic characteristics and chlorophyll fluorescence among different taxa in Paeonia lactiflora group. J Plant Ecol-UK, 2010,34:1463-1471 (in Chinese with English abstract).
[27] 唐永凯, 贾永义 . 荧光定量PCR数据处理方法的探讨. 生物技术, 2008,18(3):89-91.
Tang Y K, Jia Y Y . Discussion on data processing method of fluorescence quantitative PCR. Biotechnology, 2008,18(3):89-91 (in Chinese with English abstract).
[28] Chen T, Zhang Y, Zhao L, Zhu Z, Lin J, Zhang S, Wang C . Fine mapping and candidate gene analysis of a green-revertible albino gene in rice. J Genet Genomics, 2009,36:117-123.
doi: 10.1016/S1673-8527(08)60098-3 pmid: 19232310
[29] 孙萌萌, 余庆波, 张慧琦 . 控制水稻叶绿体发育基因OsALB23的定位. 植物生理与分子生物学报, 2006,32:433-437.
Sun M M, Yu Q B, Zhang H Q . Controlling the location of chloroplast developmental gene OsALB23 in rice. J Plant Physiol Mol Biol, 2006,32:433-437 (in Chinese with English abstract).
[30] 程世超, 刘合芹, 冯世座, 赵辉, 汪得凯, 陶跃之, 翟国伟 . 水稻白化致死突变体abl4的鉴定和基因定位. 中国水稻科学, 2013,27:240-246.
Cheng S C, Liu H Q, Feng S Z, Zhao H, Wang D K, Tao Y Z, Qi G W . Identification and gene mapping of lethal mutant abl4 in rice albino. Chin J Rice Sci, 2013,27:240-246 (in Chinese with English abstract).
[31] Gong X D, Jiang Q, Xu J L, Zhang J H, Teng S, Lin D Z, Dong Y J . Disruption of the rice plastid ribosomal protein S20 leads to chloroplast developmental defects and seedling lethality. Genes Genome Genet, 2013,3:1769-1777.
doi: 10.1534/g3.113.007856 pmid: 3789801
[32] Jia L Q, Zhang B T, Mao C Z, Li J H, Wu Y R, Wu P, Wu Z C . OsCYT-INV1 for alkaline/neutral invertase is involved in root cell development and reproductivity in rice ( Oryza sativa L.). Planta, 2008,228:51-59.
doi: 10.1007/s00425-008-0718-0 pmid: 18317796
[33] Yao S G, Kodama R, Wang H, Ichii M, Taketa S, Yoshida H . Analysis of the rice SHORT-ROOT5 gene revealed functional diversification of plant neutral/alkaline invertase family. Plant Sci, 2009,176:627-634.
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!