欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (9): 1349-1364.doi: 10.3724/SP.J.1006.2019.82061

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用WGCNA鉴定非生物胁迫相关基因共表达网络

李旭凯1,李任建2,张宝俊2,*()   

  1. 1 山西农业大学生命科学学院, 山西太谷030801
    2 山西农业大学农学院, 山西太谷 030801
  • 收稿日期:2018-12-10 接受日期:2019-04-15 出版日期:2019-09-12 网络出版日期:2019-04-18
  • 通讯作者: 张宝俊
  • 作者简介:E-mail: xukai_li@sxau.edu.cn
  • 基金资助:
    本研究由山西省优秀博士来晋工作奖励资金科研项目(SXYBKY201738);山西农业大学科技创新基金项目(2017YJ27);山西省研究生教育创新项目资助(2018BY066)

Identification of rice stress-related gene co-expression modules by WGCNA

LI Xu-Kai1,LI Ren-Jian2,ZHANG Bao-Jun2,*()   

  1. 1 College of Life Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, China
    2 College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi, China
  • Received:2018-12-10 Accepted:2019-04-15 Published:2019-09-12 Published online:2019-04-18
  • Contact: Bao-Jun ZHANG
  • Supported by:
    This study was supported by the Excellent Talents Come to Shanxi to Reward Scientific Research Projects(SXYBKY201738);the Scientific and Technological Innovation Programs of Shanxi Agricultural University(2017YJ27);the Education Innovation Project for Graduate Students in Shanxi Province(2018BY066)

摘要:

加权共表达网络分析(Weighted Gene Co-expression Network Analysis, WGCNA)是用来描述不同样品之间基因关联模式的系统生物学方法, 可以用来鉴定高度协同变化的基因集。本研究利用正常水稻组织共47份转录组数据, 通过冷胁迫、干旱胁迫、盐胁迫不同的处理方式, 使用WGCNA方法, 根据已克隆基因的报道与以上3种胁迫相关的关键基因, 探究不同逆境下基因之间的调控关系。通过对低表达量基因的过滤, 最终利用筛选的30,339个表达的基因来构建共表达矩阵, 得到15个模块。分析发现已知的水稻3种相关基因在各个模块均有存在, 于是对预测到的靶基因进行GO富集分析。对3种胁迫下处理的转录组数据进行差异表达基因分析, 结合已报道与胁迫相关的基因, 选取各胁迫相关的2个模块进行了基因调控网络的构建。鉴于3种胁迫相关基因在green模块中大量分布, 通过对green模块下各自特有的基因和共有的基因的GO功能富集分析, 并对共有的基因构建调控网络, 挖掘到2599个与3种胁迫都相关的基因, 并预测出25个抗逆相关的关键基因, 为水稻的抗逆及综合抗逆能力等研究提供了新思路。

关键词: 水稻, 干旱胁迫, 冷胁迫, 盐胁迫, 权重基因共表达网络(WGCNA)

Abstract:

Weighted Gene Co-expression Network Analysis (WGCNA) is a systematic biological method describing gene association patterns among different samples. It can be used to identify synergistically altered gene sets. In this study, 47 transcriptome data of rice tissues specimens were used to explore the regulation relationship between genes under harsh environmental conditions (cold, drought, and salt) try WGCNA method. By filtering the low expressed genes, the co-expression matrix was finally constructed using the screened 30,339 expressed genes. Subsequently, 15 modules were obtained. The reports of cloned key genes under those three stresses existed in each module, so the GO enrichment analysis was performed on the predicted target genes. The differentially expressed genes were analyzed by transcriptome data under harsh conditions, and combined with the reported stress-related genes, two stress-related modules were selected to construct the gene regulatory network. In consideration of a large number of genes related to the mentioned harsh situations in the green module, the GO functional enrichment analysis was carried out for the three kinds of stress genes under the green module, and the gene regulatory network was constructed for the common genes. In summary, 2599 harsh environmental situations-related genes were mined. Meanwhile, 25 key genes related to stress resistance were predicted. Our results on stress resistance and comprehensive stress resistance open a new window for future studies.

Key words: rice, drought stress, cold stress, salt stress, Weighted Gene Co-Expression Network (WGCNA)

图1

基因聚类树和样品分割 A: 样品的层次聚类树; B: dynamic tree cut表示根据各个基因的表达量计算划分的模块; C: merged dynamic是根据dynamic tree cut合并相似模块的结果。"

图2

报道基因分布情况 图中英文表示模块的颜色, 数字表示已报道相关基因所属模块的数目及总数目。A: 已报道冷胁迫相关基因在各个模块中所占的比例; B: 已报道干旱胁迫相关基因在各个模块中所占的比例; C: 已报道盐胁迫相关基因在各个模块中所占的比例。"

表1

模块GO富集情况(部分) "

胁迫
Stress
模块
Module
基因数目
Number of genes
GO 显著富集的项目
Significantly enriched term
P
P-value
干旱
Drought
Lightgreen 33 GO:0009062 脂肪酸分解过程
Fatty acid catabolic process
0
330 GO:1901700 对含氧化合物的响应
Response to oxygen-containing compound
0
65 GO:0000302 活性氧的响应
Response to reactive oxygen species
1.11E-16
132 GO:0009737 脱落酸响应
Response to abscisic acid
1.38E-10
160 GO:0006970 渗透胁迫响应
Response to osmotic stress
6.47E-13
103 GO:0009415 对水的响应
Response to water
5.72E-09
Green 23 GO:0043069 程序性细胞死亡的负调控
Negative regulation of programmed cell death
8.84E-09
203 GO:0006979 氧化应激反应
Response to oxidative stress
4.41E-12
胁迫
Stress
模块
Module
基因数目
Number of genes
GO 显著富集的项目
Significantly enriched term
P
P-value

Cold
Green 25 GO:0010857 钙依赖性蛋白激酶活性
Calcium-dependent protein kinase activity
1.12E-08
31 GO:0044106 细胞酰胺代谢过程
Cellular amine metabolic process
2.16E-07
20 GO:0060548 细胞死亡负调控
Negative regulation of cell death
2.21E-07
14 GO:0003714 转录辅阻遏活性
Transcription corepressor activity
2.64E-07
16 GO:2000022 茉莉酸介导的信号转导通路的调控
Regulation of jasmonic acid mediated signaling pathway
3.58E-06
Darkmagenta 70 GO:0008299 异戊二烯生物合成过程
Isoprenoid biosynthetic process
0
167 GO:0009266 温度刺激响应
Response to temperature stimulus
0
167 GO:0006091 前体代谢物和能量的产生
Generation of precursor metabolites and energy
0
32 GO:0016116 类胡萝卜素代谢过程
Carotenoid metabolic process
2.22E-16

Salt
Green 261 GO:0009651 盐胁迫响应
Response to salt stress
3.81E-11
586 GO:0009719 内源性刺激响应
Response to endogenous stimulus
1.94E-08
547 GO:0009725 激素应答
Response to hormone
2.68E-07
Lightgreen 244 GO:1901575 有机物分解代谢过程
Organic substance catabolic process
0
10 GO:0046487 乙醛酸代谢过程
Glyoxylate metabolic process
1.04E-08

图3

冷、干旱、盐胁迫相关的共表达网络 图中点的大小表示输入基因在网络中的权重值大小, 红色表示属于该共表达网络的核心基因, 紫色菱形表示注释到的转录因子, 粉色菱形表示既注释到转录因子又属于网络中的核心基因。A: 模块darkmagenta中与冷胁迫相关的基因共表达网络; B: 模块lightgreen中与干旱胁迫相关的基因共表达网络; C: 模块lightgreen中与盐胁迫相关的基因共表达网络。"

表2

模块核心基因功能注释"

模块分类
Module name
基因名称
Gene name
水稻中基因注释
Annotation in rice
拟南芥同源基因注释
Homologous gene
in A. thaliana
功能注释
Gene function
Darkmagnenta LOC_Os03g08570 胺氧化酶
Amine oxidase
AT4G14210 一种在类胡萝卜素生物合成过程中催化八氢番茄红素致zeta-胡萝卜素去饱和的酶
An enzyme that catalyzes the desaturation of phytoene to zeta-carotene during carotenoid biosynthesis
LOC_Os01g01420 表达蛋白
Expressed protein
AT3G54360 编码一个过氧化氢酶活性相关的过氧化氢酶伴侣, 可响应多重胁迫
Encodes a catalase chaperon that is essential for catalase activity. Required for multiple stress responses.
LOC_Os04g39970 含有结构域的液泡分选蛋白9
Vacuolar sorting protein 9 domain-containing protein
模块分类
Module name
基因名称
Gene name
水稻中基因注释
Annotation in rice
拟南芥同源基因注释
Homologous gene
in A. thaliana
功能注释
Gene function
LOC_Os05g34040 单加氧酶
Monooxygenase
AT4G30720 编编码在叶绿体基质中检测到的推定的氧化还原酶/电子载体
Encodes a putative oxidoreductase/electron carrier detected in the chloroplast stroma
LOC_Os02g40860 酪蛋白激酶1
CK1_CaseinKinase_1
LOC_Os09g21250 表达蛋白
Expressed protein
AT5G23040 编码一种蛋白质, 使原卟啉抗体能够与pPORA的转运序列结合, 调节pPORA向质体基质的易位, 并阻止易位多肽链运回细胞质
Encodes a protein that enables protochlorophillide's binding to pPORA’s transit sequence, regulating Ppora’s translocation into the plastid stroma, and blocking movement of the translocating polypeptide chain back into the cytosol.
LOC_Os09g02270 环化酶家族蛋白
Cyclase family protein
AT4G35220 环化酶家族蛋白
Cyclase family protein
LOC_Os01g54540 核糖体蛋白L13
Ribosomal protein L13
AT1G78630 核糖体蛋白L13家族蛋白
Ribosomal protein L13 family protein
Lightgreen LOC_Os10g28600 PPR重复结构域含有蛋白质
PPR repeat domain containing protein
AT4G31850 编码含有27个五肽-重复序列(PPR)基序的蛋白质。
Encodes a protein containing 27 pentatrico-peptide repeat (PPR) motifs.
LOC_Os01g07120 含有AP2结构域的蛋白质
AP2 domain containing protein
AT2G40340 编码ERF/AP2转录因子家族的DREB亚家族A-2的成员。DREB2A和DREB2B参与对干旱的反应。
Encodes a member of the DREB subfamily A-2 of ERF/AP2 transcription factor family. DREB2A and DREB2B that are involved in response to drought.
LOC_Os08g43210 含有AP2结构域的蛋白质
AP2 domain containing protein
LOC_Os08g43334 含有HSF型DNA结合域的蛋白质
HSF-type DNA-binding domain containing protein
AT4G11660 热应激转录因子(HSF)家族成员
Member of Heat Stress Transcription Factor (Hsf) family
LOC_Os03g41390 ZOS3-15-C2H2锌指蛋白
ZOS3-15-C2H2 zinc finger protein
AT1G27730 与高等植物中的Cys2/HIS2型锌指蛋白有关。结果表明, ZAT10产生的耐盐性部分依赖于EnA1/PMR2。
Related to Cys2/His2-type zinc-finger proteins found in higher plants. responses. Salt tolerance produced by ZAT10 appeared to be partially dependent on ENA1/PMR2
LOC_Os12g39400 ZOS2-02-C2H2锌指蛋白
ZOS12-09-C2H2 zinc finger protein
LOC_Os05g34830 无顶端分生组织蛋白
No apical meristem protein
模块分类
Module name
基因名称
Gene name
水稻中基因注释
Annotation in rice
拟南芥同源基因注释
Homologous gene
in A. thaliana
功能注释
Gene function
LOC_Os01g42860 抑制剂I家族蛋白
Inhibitor I family protein
LOC_Os02g09830 BZIP转录因子结构域蛋白
bZIP transcription factor domain containing protein
LOC_Os08g38880 WD40重复家族蛋白
WD-40 repeat family protein
LOC_Os07g47100 质子逆向转运蛋白-2家族
Proton antiporter-2 family
AT3G05030 编码液泡K+/H+交换器, 该交换器对液泡膜上活跃的K+摄取必不可少, 并参与调节气孔关闭。
Encodes a vacuolar K+/H+ exchanger essential for active K+ uptake at the tonoplast and involved in regulating stomatal closure.

图4

绿色模块中与3种胁迫相关的共表达基因 绿色模块中冷、干旱、盐胁迫下, 预测的与已报道基因共表达基因的韦恩图。A: 黄色表示与已报道冷胁迫基因共表达的基因, 蓝色表示与已报道干旱胁迫基因共表达的基因, 绿色表示与已报道盐胁迫基因共表达的基因; B: 柱状图中分别表示已报道的相关基因的总数目; C: 分别表示3种已报道胁迫基因的交集数目、存在两两交集的数目的总个数、各自特有未被取到交集的基因数目总和。"

图5

绿色模块中3种胁迫特有共表达基因的GO功能富集 不同胁迫下特有的共表达基因GO富集结果。横轴表示富集分数, 纵轴表示富集到的GO通路。A: 冷胁迫下特有的共表达基因GO功能富集结果; B: 干旱胁迫下特有的共表达基因GO功能富集结果; C: 盐胁迫下特有的共表达基因GO富集结果。"

表3

多种胁迫调控基因功能注释"

候选基因
Candidate gene
转录因子
Transcription factor
冷胁迫
Cold
干旱
Drought

Salt
LOC_Os11g05160 AT-hook蛋白
AT-hook content nuclear
localized protein
AT-hook蛋白
AT-hook content nuclear localized protein
AT-hook蛋白
AT-hook content nuclear localized protein
LOC_Os03g17700 丝裂原活化蛋白激酶
Mitogen-activated protein kinase
丝裂原活化蛋白激酶
Mitogen-activated protein kinase
丝裂原活化蛋白激酶
Mitogen-activated protein kinase
LOC_Os01g66120 NAC NAC转录因子
NAC domain transcription factor
NAC转录因子
NAC domain transcription factor
NAC转录因子
NAC domain transcription factor
LOC_Os03g12820 SRO蛋白基因
Similar to RCD1 gene
SRO蛋白基因
Similar to RCD1 gene
候选基因
Candidate gene
转录因子
Transcription factor
冷胁迫
Cold
干旱
Drought

Salt
LOC_Os03g60560 C2H2 TFIIIA型锌指蛋白基因
TFIIIA-type zinc finger protein gene
TFIIIA型锌指蛋白基因
TFIIIA-type zinc finger
protein gene
LOC_Os02g33820 ABA-胁迫-成熟诱导基因
ABA, stress, ripening gene
ABA-胁迫-成熟诱导基因
ABA, stress, ripening gene
LOC_Os07g39870 TFIIIA型锌指蛋白基因
TFIIIA-type zinc finger protein gene
TFIIIA型锌指蛋白基因
TFIIIA-type zinc finger protein
gene
LOC_Os06g36670 ABA受体
Pyrabactin resistance-like
abscisic acid receptor
ABA受体
Pyrabactin resistance-like
abscisic acid receptor
LOC_Os06g43660 液泡膜质子转运无机焦磷酸酶
H+-pyrophosphatase in
tonoplasts
液泡膜质子转运无机焦磷酸酶
H+-pyrophosphatase in tonoplasts
LOC_Os07g03710 病程相关蛋白
Pathogenesis-related protein 1a
病程相关蛋白
Pathogenesis-related protein 1a
LOC_Os02g03410 钙依赖性蛋白激酶
Calcium-dependent protein Kinase
钙依赖性蛋白激酶
Calcium-dependent protein kinase
LOC_Os03g53200 钙调素
Calmodulin
钙调素
Calmodulin
LOC_Os08g39450 A20/AN1型锌指蛋白
A20/AN1 zinc-finger protein
A20/AN1型锌指蛋白
A20/AN1 zinc-finger protein
LOC_Os01g74410 MYB MYB转录因子
MYB family transcription factor
MYB转录因子
MYB family transcription factor
LOC_Os02g52780 bZIP bZIP转录因子
bZIP transcription factor
bZIP转录因子
bZIP transcription factor
LOC_Os03g60080 NAC 胁迫响应的NAC转录因子
基因
Stress-responsive NAC 1
胁迫响应的NAC转录因子
基因
Stress-responsive NAC 1
LOC_Os02g52780 bZIP bZIP转录因子
bZIP transcription factor
bZIP转录因子
bZIP transcription factor
LOC_Os11g08210 NAC NAC转录因子
NAC domain transcription
factor
NAC转录因子
NAC domain transcription factor
LOC_Os04g50060 GRAS GRAS转录因子
GRAS transcription factor gene
GRAS转录因子
GRAS transcription factor gene
LOC_Os01g74410 MYB MYB转录因子
MYB family transcription factor
MYB转录因子
MYB family transcription factor
LOC_Os03g53200 钙调蛋白
Calmodulin
钙调蛋白
Calmodulin
LOC_Os02g50970 丝裂原活化蛋白激酶
Mitogen-activated protein kinase
丝裂原活化蛋白激酶Mitogen-activated protein kinase
候选基因
Candidate gene
转录因子
Transcription factor
冷胁迫
Cold
干旱
Drought

Salt
LOC_Os07g03710 病程相关蛋白
Pathogenesis-related protein 1a
病程相关蛋白
Pathogenesis-related protein 1a
LOC_Os01g32660 丝裂原活化蛋白激酶
Mitogen activated protein kinase
丝裂原活化蛋白激酶
Mitogen activated protein kinase
LOC_Os01g73770 ERF AP2/EREBP转录因子基因
AP2/EREBP transcription factor gene
AP2/EREBP转录因子基因
AP2/EREBP transcription factor gene

表4

模块GO富集情况(部分)"

分类
Class
GO分类
GO term
显著富集的term
Significantly enriched term
P
P-value
分子功能
Molecular function
GO:0005198 结构分子活性 Structural molecule activity 0
GO:0003735 核糖体的结构组成 Structural constituent of ribosome 0
GO:0016491 氧化还原酶活性 Oxidoreductase activity 5.69E-13
GO:0004601 过氧化物酶活性 Peroxidase activity 1.07E-11
GO:0016684 氧化还原酶活性对过氧化物作为受体的作用
Oxidoreductase activity, acting on peroxide as acceptor
3.13E-11
GO:0016209 抗氧化活性 Antioxidant activity 4.28E-11
GO:0020037 血红素结合 Heme binding 4.68E-09
细胞组分
Cellular component
GO:0022625 胞浆大核糖体亚基 Cytosolic large ribosomal subunit 0
GO:0071944 细胞外周 Cell periphery 0
GO:0044391 核糖体亚基 Ribosomal subunit 0
GO:0044445 胞质部分 Cytosolic part 0
GO:0015934 大核糖体亚基 Large ribosomal subunit 0
GO:0005840 核糖体 Ribosome 0
生物学过程
Biological process
GO:0043604 酰胺生物合成过程 Amide biosynthetic process 0
GO:0043603 细胞酰胺代谢过程 Cellular amide metabolic process 2.22E-16
GO:0042744 过氧化氢分解代谢过程 Hydrogen peroxide catabolic process 2.34E-10
GO:0055114 氧化还原过程 Oxidation-reduction process 3.03E-09
GO:0072593 过氧化氢代谢过程 Reactive oxygen species metabolic process 1.05E-06
GO:0009698 苯丙烷代谢过程 Phenylpropanoid metabolic process 4.01E-05
GO:0009808 木质素代谢过程 Lignin metabolic process 6.62E-05
GO:0006970 对渗透压的反应 Response to osmotic stress 4.15E-04
GO:0009404 毒素代谢过程 Toxin metabolic process 4.23E-04
GO:0043069 细胞程序性死亡负调节Negative regulation of programmed cell death 5.87E-04
GO:0044248 细胞分解代谢过程 Cellular catabolic process 0.00136054

图6

Green模块中3种胁迫下共有基因的共表达网络 图中红色表示同时参与3种胁迫响应的基因, 蓝色表示共表达基因, 点的大小表示该基因的权重值。A: 冷胁迫下的共表达网络; B: 干旱胁迫下的共表达网络; C: 盐胁迫下的共表达网络。"

表5

候选基因功能注释"

候选基因
Candidate gene
候选基因在水稻中注释
Annotation of candidate genes in rice
候选基因在玉米同源基因
Homology gene in maize
基因功能
Gene function
LOC_Os02g30900 激酶结构域蛋白
Protein kinase domain containing protein
GRMZM2G137468 蛋白激酶APK1A
Protein kinase APK1A
LOC_Os11g28990 TBC结构域蛋白质
TBC domain containing protein
GRMZM2G122935 含有RabGAP/TBC结构域的蛋白质
RabGAP/TBC domain-containing protein
LOC_Os09g32040 无顶端分生组织蛋白
No apical meristem protein
GRMZM2G004531 N-乙酰-L-蛋氨酸/N-乙酰-L-甲硫氨酸
Nam 7
LOC_Os07g35750 DUF26激酶
DUF26 kinases
GRMZM2G075438 受体激酶RK20-1
Receptor kinase RK20-1
LOC_Os05g45210 呼吸爆发氧化酶
Respiratory burst oxidase
GRMZM2G043435 呼吸爆发氧化酶C
Respiratory burst oxidase C
候选基因
Candidate gene
候选基因在水稻中注释
Annotation of candidate genes in rice
候选基因在玉米同源基因
Homology gene in maize
基因功能
Gene function
LOC_Os01g58150 表达蛋白质
Expressed protein
GRMZM2G139460 功能未知的保守基因
Conserved gene of unknown function
LOC_Os03g13300 谷氨酸脱羧酶
Glutamate decarboxylase
GRMZM2G098875 谷氨酸脱羧酶
Glutamate decarboxylase
[1] Larcher W . Physiological Plant Ecology. England: J R Etherington, 1996. pp 630-631.
[2] Krasensky J, Jonak C . Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot, 2012, 63:1593-1608.
[3] Abebe T, Guenzi A C, Martin B, Cushman J C . Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol, 2003,131:1748-1755.
[4] Richards R A . Defining selection criteria to improve yield under drought. Plant Growth Regul, 1996,20:157-166.
[5] Cushman J C, Bohnert H J . Genomic approaches to plant stress tolerance. Curr Opin Plant Biol, 2000,3:117-124.
[6] Jin J J, Zhang H, Zhang J F, Liu P P, Cao P J . Integrated transcriptomics and mtabolomics analysis to characterize cold stress responses in Nicotiana tabacum. BMC Genomics, 2017,18:496.
[7] Duan M, Zhang R X, Zhu F G, Zhang Z Q, Gou L M, Wang T . A lipid-anchored NAC transcription factor is translocated into the nucleus and activates glyoxalase I expression during drought stress. Plant Cell, 2017,29:1748-1772.
[8] Zhang B, Horvath S . A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol, 2005,4:17.
[9] Goldberg D H, Victor J D, Gardner E P, Gardner D . Spike train analysis toolkit: enabling wider application of information-theoretic techniques to neurophysiology. Neuroinformatics, 2009,7:165-178.
[10] Kroll K W, Mokaram N E, Pelletier A R, Frankhouser D E, Westphal M S, Bundschuh R, Blachly J S, Yan P . Quality control for RNA-Seq (QuaCRS): an integrated quality control pipeline. Cancer Inform, 2014,13(S3):7-14.
[11] Bolger A M . Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics, 2014, 30:2114-2120.
[12] Kim D, Langmead B, Salzberg S L . HISAT: a fast spliced aligner with low memory requirements. Nat Methods, 2015,12:357-360.
[13] Liao Y, Smyth G K, Shi W . featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 2014,30:923-930.
[14] Langfelder P, Horvath S . WGCNA: an R package for weighted correlation network analysis. BMC Bioinform, 2008,9:559.
[15] Robinson M D, McCarthy D J, Smyth G K . edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010,26:139-140.
[16] Chen C J, Xia R, Chen H, He Y H . TBtools, a Toolkit for Biologists integrating various HTS-data handling tools with a user- friendly interface. BioRxiv, 2018 [2018-10-31]. https://doi.org/10.1101/289660.
[17] Su G, Morris J H, Demchak B, Bader G D . Biological network exploration with Cytoscape 3. Curr Protoc Bioinformatics, 2014, 47: 8.13.1-8.13.24.
[18] Jin J, Zhang H, Kong L, Gao G, Luo J . A portal for the functional and evolutionary study of plant transcription factors. Nucl Acids Res, 2014,42:D1182-1187.
[19] Song J, Wei X J, Shao G N, Sheng Z, Chen D, Liu C, Jiao G, Xie L, Tang S P, Hu P S . The rice nuclear gene WLP1 encoding a chloroplast ribosome L13 protein is needed for chloroplast development in rice grown under low temperature conditions. Plant Mol Biol, 2014,84:301-314.
[20] Fang J, Chai C L, Qian Q, Li C, Tang J, Sun L, Huang Z, Guo X, Sun C, Liu M, Zhang Y, Lu Q, Wang Y, Lu C, Han B, Chen F, Cheng Z K, Chu C C . Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice. Plant J, 2008,54:177-189.
[21] Qin Y H, Shen X, Wang N L, Ding X P . Characterization of a novel cyclase-like gene family involved in controlling stress tolerance in rice. J Plant Physiol, 2015,181:30-41.
[22] Lu G W, Wu F Q, Wu W, Wang H J, Zheng X M, Zhang Y, Chen X, Zhou K, Jin M, Cheng Z, Li X Y, Jiang L, Wang H Y, Wan J M . Rice LTG1 is involved in adaptive growth and fitness under low ambient temperature. Plant J, 2014,78:468-480.
[23] Chen J Q, Meng X P, Zhang Y, Xia M, Wang X P . Over- expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett, 2008,30:2191-2198.
[24] Singh A, Sahi C, Grover A . Chymotrypsin protease inhibitor gene family in rice: genomic organization and evidence for the presence of a bidirectional promoter shared between two chymotrypsin protease inhibitor genes. Gene, 2009,428:9-19.
[25] Zhang X, Zhang B, Li M J, Cui Y C, Wang M L, Xia X J . OsMSR15 encoding a rice C2H2-type zinc finger protein confers enhanced drought tolerance in transgenic Arabidopsis. J Plant Biol, 2016,59:271-281.
[26] Huang J, Wang M M, Bao Y M, Sun S J, Pan L J, Zhang H S . SRWD: a novel WD40 protein subfamily regulated by salt stress in rice(Oryza sativa L.). Gene, 2008,424:71-79.
[27] Liu S P, Zheng L Q, Xue Y H, Zhang Q, Wang L, Shou H X . Overexpression of OsVP1 and OsNHX1 increases tolerance to drought and salinity in rice. J Plant Biol, 2010,53:444-452.
[28] Zhou L G, Liu Z C, Liu Y H, Kong D Y, Li T F, Chen L, Luo L J . A novel gene OsAHL1 improves both drought avoidance and drought tolerance in rice. Sci Rep, 2016,6:30264.
[29] Xiong L Z, Yang Y N . Disease resistance and abiotic stress tolerance in rice areinversely modulated by an abscisicacid- inducible mitogen-activated protein kinase. Plant Cell, 2003,15:745-759.
[30] Ohnishi T, Sugahara S, Yamada T, Kikuchi K, Yoshiba Y, Hirano H Y, Tsutsumi N . OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. Genes Genet Syst, 2005,80:135-139.
[31] Du H, Wu N, Chang Y, Li X H, Xiao J H, Xiong L Z . Carotenoid deficiency impairs ABA and IAA biosynthesis and differentially affects drought and cold tolerance in rice. Plant Mol Biol, 2013,83:475-488.
[32] Liu K M, Wang L, Xu Y Y, Chen N, Ma Q B, Li F, Chong K . Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice. Planta, 2007,226:1007-1016.
[33] Zhang X, Zhang B, Li M J, Yin X M, Huang L F, Cui Y C, Wang M L, Xia X J . OsMSR15 encoding a rice C2H2-type zinc finger protein confers enhanced drought tolerance in transgenic Arabidopsis. J Plant Biol, 2016,59:271-281.
[34] Huang J, Wang M M, Bao Y M, Sun S J, Pan L J, Zhang H S . A novel WD40 protein subfamily regulated by salt stress in rice(Oryza sativa L.). Gene, 2008,424:71-79.
[35] Hackenberg T, Juul T, Auzina A, Gwizdz S, Malolepszy A, Van Der Kelen K, Dam S, Bressendorff S, Lorentzen A, Roepstorff P, Lehmann Nielsen K, Jørgensen J E, Hofius D, Van Breusegem F, Petersen M, Andersen S U . Catalase and NO CATALASE ACTIVITY1 promote autophagy-dependent cell death in Arabidopsis. Plant Cell, 2013,25:4616-4626.
[36] 刘晓东, 王若仲, 焦彬彬, 代培红, 李月 . 拟南芥IAA酰胺合成酶GH3-6负调控干旱和盐胁迫的反应. 植物学报, 2016,51:586-593.
Liu X D, Wang R Z, Jiao B B, Dai P H, Li Y . Indole acetic acid-amido aynthetase GH3-6 negatively regulates response to drought and salt in arabidopsis. Chin Bull Bot, 2016,51:586-593 (in Chinese with English abstract).
[37] Shafi A, Dogra V, Gill T, Ahuja P S, Sreenivasulu Y . Simultaneous over-expression of PaSOD and RaAPX in transgenic Arabidopsis thaliana confers cold stress tolerance through increase in vascular lignifications. PLoS One, 2014,9:e110302.
[38] Wrzaczek M, Brosché M, Salojärvi J, Kangasjärvi S, Idänheimo N, Mersmann S, Robatzek S, Karpiński S, Karpińska B, Kangasjärvi J . Transcriptional regulation of the CRK/DUF26 group of receptor-like protein kinases by ozone and plant hormones in Arabidopsis. BMC Plant Biol, 2010,10:95.
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[11] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[12] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[13] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!