欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (12): 2008-2016.doi: 10.3724/SP.J.1006.2020.03022

• 研究简报 • 上一篇    

玉米ZmbHLH161基因的克隆及功能研究

杨梦婷1,2(), 张春2(), 王作平2, 邹华文1,*(), 吴忠义2,*()   

  1. 1长江大学农学院, 湖北荆州 434023
    2北京市农林科学院 / 北京农业生物技术研究中心 / 农业基因资源与生物技术北京市重点实验室, 北京 100097
  • 收稿日期:2020-03-28 接受日期:2020-06-02 出版日期:2020-06-22 网络出版日期:2020-06-22
  • 通讯作者: 邹华文,吴忠义
  • 基金资助:
    北京市农林科学院青年基金项目(QNJJ201724);北京市农林科学院科技创新能力建设专项(KJCX20200204);北京市农林科学院科技创新能力建设专项(KJCX20200205);北京市农林科学院科技创新能力建设专项(KJCX20200407);国家自然科学基金项目(31971839);国家自然科学基金项目(31471510)

Cloning and functional analysis of ZmbHLH161 gene in maize

Meng-Ting YANG1,2(), Chun ZHANG2(), Zuo-Ping WANG2, Hua-Wen ZOU1,*(), Zhong-Yi WU2,*()   

  1. 1College of Agriculture, Yangtze University, Jingzhou 434023, Hubei, China
    2Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences / Beijing Key Laboratory of Agricultural Gene Resources and Biotechnology, Beijing 100097, China
  • Received:2020-03-28 Accepted:2020-06-02 Published:2020-06-22 Published online:2020-06-22
  • Contact: Hua-Wen ZOU,Zhong-Yi WU
  • Supported by:
    Beijing Academy of Agricultural Youth Fund(QNJJ201724);Beijing Academy of Agricultural and Forestry Sciences(KJCX20200204);Beijing Academy of Agricultural and Forestry Sciences(KJCX20200205);Beijing Academy of Agricultural and Forestry Sciences(KJCX20200407);National Natural Science Foundation of China(31971839);National Natural Science Foundation of China(31471510)

摘要:

bHLH转录因子是植物第二大转录因子家族, 在调节植物生长发育、信号转导和逆境胁迫响应等方面发挥着重要的作用。为了研究玉米bHLH家族基因在逆境胁迫响应中的功能, 本研究从玉米根组织中克隆了ZmbHLH161 (AC: NC_AQK75074)基因。生物信息学分析表明: 该基因包含3个外显子, cDNA全长1460 bp, 编码序列全长1059 bp, 编码352个氨基酸; 在玉米基因组中以单拷贝形式存在, 功能未知; ZmbHLH161蛋白分子量为37.1 kD, 理论等电点为6.10, 具有bHLH转录因子家族特有的保守结构域, 但不具跨膜结构, 无信号肽, 为亲水性蛋白, 蛋白二级结构无规则卷曲所占比例最大, 为42.05%。玉米原生质体瞬时表达试验表明, ZmbHLH161定位在细胞核内。实时荧光定量PCR (qPCR)分析表明, 正常生长条件下, ZmbHLH161主要在根系和幼胚中表达; 在脱水和干旱处理下, ZmbHLH161在玉米苗期叶片中上调表达。转基因异源表达ZmbHLH161拟南芥株系经不同浓度NaCl处理后, 其根长与野生型差异不显著, 而不同浓度甘露醇处理后其根长优于野生型。由此推测ZmbHLH161基因可能参与玉米对渗透胁迫应答。

关键词: 玉米, ZmbHLH161, 转录因子, 原生质体, qPCR, 渗透胁迫

Abstract:

bHLH transcription factors are the second largest family of transcription factors in plants and play an important role in regulating plant growth and development, signal transduction, and stress response. In order to study the function of maize bHLH family genes in response to stress, ZmbHLH161 (AC: NC_AQK75074) gene from maize root tissue was cloned in this study. Bioinformatic analysis showed that this gene contains 3 exons, the full-length of its cDNA is 1460 bp, coding sequence is 1059 bp in length, encoding 352 amino acids. It exists as a single copy in the maize genome and its function is unknown. The molecular weight of ZmbHLH161 protein is 37.1 kD, and its theoretical isoelectric point is 6.10, with a conserved domain unique to the bHLH transcription factor family, but does not have a transmembrane structure or signal peptide. It is a hydrophilic protein, and the secondary structure of the protein has a maximum proportion of 42.05%. Transient expression experiments in maize protoplasts showed that ZmbHLH161 was localized in the nucleus. Real-time quantitative PCR (qPCR) analysis showed that under normal growth conditions, ZmbHLH161 was mainly expressed in roots and immature embryos, while under dehydration and drought treatment, ZmbHLH161 was up-regulated in maize seedling leaves. After treated with different concentrations of NaCl, the root length of ZmbHLH161 transgenic heterologous Arabidopsis strains was not significantly different from that of wild type, and their root was longer than that of wild type after being treated with different concentrations of mannitol. It is speculated that ZmbHLH161 gene may be involved in the response of maize to osmotic stress.

Key words: maize, ZmbHLH161, transcription factor, protoplast, qPCR, osmotic stress

表1

本试验中所用的引物"

引物对编号
Number of primer pairs
引物名称
Primer name
引物序列
Primer sequence (5′-3′)
1 pZmbHLH161-F AGCGTTAGTCACAGTTGTTGCC
pZmbHLH161-R CGTAAGCTGGTCCAATCGGTAC
2 pZmbHLH161SL-F ATGAATTCATGGCGCTCGAAG (EcoR I)
pZmbHLH161SL-R AATAAGCTTGTGGCCTGGCC (Hind III)
3 pZmbHLH161RT-F AGCATCAGCTCCTGTCCGTGTC
pZmbHLH161RT-R CTCTCCATCTCGTCCGTGTTCC
4 pZmbHLH161At-F ATGAATTCAGCGTTAGTCACAGTTGTTGCC (EcoR I)
pZmbHLH161At-R ATGGTACCTCAGTGGCCTGGCCCCCCGC (Kpn I)
5 Actin-F TACGAGATGCCTGATGGTCAGGTCA
Actin-R TGGAGTTGTACGTGGCCTCATGGAC

图1

ZmbHLH161生物信息学分析 A: 氨基酸序列比对; B: 蛋白二级结构预测; C: 跨膜结构预测。"

图2

拟南芥、水稻和玉米bHLH转录因子氨基酸序列的系统发育树"

图3

ZmbHLH161启动子序列分析"

图4

ZmbHLH161蛋白在玉米叶片原生质体中的亚细胞定位 GFP: GFP标记的ZmbHLH161在玉米原生质体的亚细胞定位; DAPI: DAPI标记的原生质体细胞核; Bright: 同一视野光镜下的原生质体; Merged: 光镜及荧光照片的叠加; CK: 转入空载体的原生质体; ZmbHLH161: 转入目的基因载体的原生质体; 标尺为3 μm。"

图5

ZmbHLH161在玉米不同组织中的相对表达量"

图6

实时荧光定量PCR分析不同处理条件下ZmbHLH161基因在叶片和根中的表达情况 A: 干旱处理; B: 脱水处理; C: 低温(4℃)处理; D: 高盐(200 mmol L-1 NaCl)处理。数据为3个生物学重复±标准差。"

图7

T1代拟南芥PCR检测 M: DL2000 marker; P: 阳性对照; W: 野生型拟南芥; N: 阴性对照; 1~3: T1代拟南芥。"

图8

不同盐浓度下转基因拟南芥根长比较 A~D分别为0、0.10、0.15和0.18 mol L-1盐处理的生长情况; E: 不同盐浓度下拟南芥平均主根长度; WT: 野生型拟南芥; OE: 转ZmbHLH161拟南芥; 标尺为1.5 cm。"

图9

不同甘露醇浓度下转基因拟南芥根长比较 A~D分别为0、0.15、0.2和0.3 mol L-1甘露醇处理的生长情况; E: 不同甘露醇浓度下拟南芥平均主根长度; WT: 野生型拟南芥; OE: 转ZmbHLH161拟南芥; 标尺为1.5 cm。*和**分别表示转基因拟南芥主根长度较野生型呈差异显著水平(P<0.05)和差异极显著水平(P<0.01)。"

[1] 刘天金, 王玉玺, 宁明宇, 靖飞, 董晓霞, 王志敏, 刘春青 . 我国玉米种业转型升级的路径与策略探讨. 中国种业, 2018, ( 2):1-7.
Liu T J, Wang Y X, Ning M Y, Jing F, Dong X J, Wang Z M, Liu C Q . Discussion on the path and strategy of transformation and upgrading of China’s maize seed industry. China Seed Ind, 2018, ( 2):1-7 (in Chinese).
[2] 余爱丽, 赵晋锋, 王高鸿, 杜艳伟, 李颜方, 张正 . 玉米ZmSAMS1基因在盐、干旱等逆境胁迫下的表达分析. 玉米科学, 2016,24(3):31-35.
Yu A L, Zhao J F, Wang G H, Du Y W, Li Y F, Zhang Z . Expression analysis of ZmSAMS1 gene under salt, drought and other stress. J Maize Sci, 2016,24(3):31-35 (in Chinese with English abstract).
[3] 张艳馥, 沙伟 . 转录因子概述. 生物学教学, 2009, 34, ( 10):7-8.
Zhang Y F, Sha W . Overview of transcription factors. Biol Teach, 2009, 34, ( 10):7-8 (in Chinese).
[4] Murre C, McCaw P S, Baltimore D . A new DNA binding and dimerizing motif in immunoglobulin enhancer binding, daugtherless, MyoD, and MYC proteins. Cell, 1989,56:777-783.
doi: 10.1016/0092-8674(89)90682-x pmid: 2493990
[5] Nuno P, Liam D . Origin and diversification of basic- helix-loop-helix proteins in plants. Mol Biol Evol, 2010,27:862-874.
doi: 10.1093/molbev/msp288 pmid: 19942615
[6] Atchley W R, Fitch W M . A natural classification of the basic helix-loop-helix class of transcription factors. Proc Natl Acad Sci USA, 1997,94:5172-5176.
doi: 10.1073/pnas.94.10.5172 pmid: 9144210
[7] 罗赛男, 杨国顺, 石雪晖, 卢向阳, 徐萍 . 转录因子在植物抗逆性上的应用研究. 湖南农业大学学报(自然科学版), 2005,31:219-223.
Luo S N, Yang G S, Shi X H, Lu X Y, Xu P . On the application of transcription factors to plant stress resistance. J Hunan Agric Univ (Nat Sci Edn), 2005,31:219-223 (in Chinese with English abstract).
[8] Anna-Marie S, Sandra K, Ulrike S, Unte P H, Koen D, Heinz S . The Arabidopsis ABORTED MICROSPORES(AMS) gene encodes a MYC class transcription factor. Plant J, 2003,33:413-423.
doi: 10.1046/j.1365-313x.2003.01644.x pmid: 12535353
[9] Dany H, Hidenori S . Antagonistic actions of HLH/bHLH proteins are involved in grain length and weight in rice. PLoS One, 2012,7:e31325.
doi: 10.1371/journal.pone.0031325 pmid: 22363621
[10] Ikeda M, Mitsuda N, Ohme-Takagi M . ATBS1 INTERACTING FACTORs negatively regulate Arabidopsis cell elongation in the triantagonistic bHLH system. Plant Signal Behav, 2013,8:e23448.
doi: 10.4161/psb.23448 pmid: 23333962
[11] Endo T, Fujii H, Sugiyama A, Nakano M, Nakajima N, Ikoma Y, Omura M . Overexpression of a citrus basic helix-loop-helix transcription factor ( CubHLH1), which is homologous to Arabidopsis activation-tagged bri1 suppressor 1 interacting factor genes, modulates carotenoid metabolism in transgenic tomato. Plant Sci, 2016,243:35-48.
doi: 10.1016/j.plantsci.2015.11.005 pmid: 26795149
[12] Danielle M F, Jennifer N, Takamichi M, Julin N M, José A, Joseph R E, Masaki F, Joanne C . Three redundant brassinosteroid early response genes encode putative bHLH transcription factors required for normal growth. Genetics, 2002,162:1445-1456.
pmid: 12454087
[13] Ni M, Tepperman J M, Quail P H . Binding of phytochrome B to its nuclear signalling partner PIF3 is reversibly induced by light. Nature, 1999,400:781-784.
doi: 10.1038/23500 pmid: 10466729
[14] Huq E . PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. EMBO J, 2002,21:2441-2450.
doi: 10.1093/emboj/21.10.2441 pmid: 12006496
[15] Kiribuchi K, Jikumaru Y, Kaku H, Minami E, Hasegawa M, Kodama O, Seto H, Okada K, Nojiri H, Yamane H . Involvement of the basic helix-loop-helix transcription factor RERJ1 in wounding and drought stress responses in rice plants. Biosci Biotechnol Biochem, 2005,69:1042-1044.
doi: 10.1271/bbb.69.1042 pmid: 15914931
[16] Li H M, Sun J Q, Xu Y X, Jiang H L, Wu X Y, Li C Y . The bHLH-type transcription factor AtAIB positively regulates ABA response in Arabidopsis. Plant Mol Biol, 2007,65:655-665.
doi: 10.1007/s11103-007-9230-3
[17] Jiang Y Q, Yang B, Deyholos M K . Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress. Mol Genet Genomics, 2009,282:503-516.
doi: 10.1007/s00438-009-0481-3 pmid: 19760256
[18] Chinnusamy V, Ohta M, Kanrar S, Lee B H, Hong X H, Agarwal M, Zhu J K . ICE: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev, 2003,17:1043-1054.
doi: 10.1101/gad.1077503 pmid: 12672693
[19] Ogo Y, Itai R N, Nakanishi H, Kobayashi T, Takahashi M, Mori S, Nishizawa N K . The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions. Plant J, 2007,51:366-377.
doi: 10.1111/j.1365-313X.2007.03149.x pmid: 17559517
[20] Li Z X, Liu C, Zhang Y, Wang B M, Ran Q J, Zhang J R . The bHLH family member ZmPTF1 regulates drought tolerance in maize by promoting root development and abscisic acid synthesis. J Exp Bot, 2019,70:5471-5486.
doi: 10.1093/jxb/erz307 pmid: 31267122
[21] Bailey P C, Martin C, Toledo-Otriz G, Quail P H, Huq E, Heim M A, Jakoby M, Werber M, Weisshaar B . Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana. Plant Cell, 2003,15:2497-2501.
doi: 10.1105/tpc.151140 pmid: 14600211
[22] Li X, Duan X, Jiang H X, Sun Y J, Tang Y P, Yuan Z, Guo J K, Liang W Q, Chen L, Yin J Y, Ma H, Wang J, Zhang D B . Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiol, 2006,141:1167-1184.
doi: 10.1104/pp.106.080580 pmid: 16896230
[23] Zhang T T, Wei L, Zhang H S, Ma L, Li P H, Ge L, Li G . Genome-wide analysis of the basic Helix-Loop-Helix (bHLH) transcription factor family in maize. BMC Plant Biol, 2018,18:235.
doi: 10.1186/s12870-018-1441-z pmid: 30326829
[24] Yoo S D, Cho Y H, Sheen J . Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc, 2007,2:1565-1572.
doi: 10.1038/nprot.2007.199 pmid: 17585298
[25] Livak K J, Schmittgen T D . Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method . Methods, 2001,25:402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[26] Clough S J, Bent A F . Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J, 1998,16:735-743.
doi: 10.1046/j.1365-313x.1998.00343.x pmid: 10069079
[27] Chen J Q, Meng X P, Zhang Y, Xia M, Wang X P . Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett, 2008,30:2191-2198.
doi: 10.1007/s10529-008-9811-5 pmid: 18779926
[28] Rozenn L H, Mathieu C, Dipankar C, Thomas M, Catherine B . At bHLH68 transcription factor contributes to the regulation of ABA homeostasis and drought stress tolerance in Arabidopsis. Physiol Plant, 2017,160:312-327.
doi: 10.1111/ppl.12549 pmid: 28369972
[29] Yao P F, Li C L, Zhao X R, Li M F, Zhao H X, Guo J Y, Cai Y, Chen H, Wu Q . Overexpression of a tartary buckwheat gene, FtbHLH3, Enhances drought/oxidative stress tolerance in transgenic Arabidopsis. Front Plant Sci, 2017,8:625.
doi: 10.3389/fpls.2017.00625 pmid: 28487715
[30] Li F, Guo S Y, Zhao Y, Chen D Z, Chong K, Xu Y Y . Overexpression of a homopeptide repeat-containing bHLH protein gene ( OrbHLH001) from Dongxiang wild rice confers freezing and salt tolerance in transgenic Arabidopsis. Plant Cell Rep, 2010,29:977-986.
doi: 10.1007/s00299-010-0883-z
[31] Zhou J, Li F, Wang J L, Ma Y, Chong K, Xu Y Y . Basic helix-loop-helix transcription factor from wild rice ( OrbHLH2) improves tolerance to salt and osmotic stress in Arabidopsis. J Plant Physiol, 2009,166:1296-1306.
doi: 10.1016/j.jplph.2009.02.007 pmid: 19324458
[32] Liu W W, Tai H H, Li S S, Gao W, Zhao M, Xie C X, Li W X . bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism. New Phytol, 2014,201:1192-1204.
doi: 10.1111/nph.12607
[33] Xu W R, Zhang N B, Jiao Y T, Li R M, Xiao D M, Wang Z . The grapevine basic helix-loop-helix (bHLH) transcription factor positively modulates CBF-pathway and confers tolerance to cold-stress in Arabidopsis. Mol Biol Rep, 2014,41:5329-5342.
doi: 10.1007/s11033-014-3404-2
[34] Zhao Q, Xiang X, Liu D, Yang A, Wang Y . Tobacco transcription factor NtbHLH123 confers tolerance to cold stress by regulating the NtCBF pathway and reactive oxygen species homeostasis. Front Plant Sci, 2018,9:381.
doi: 10.3389/fpls.2018.00381 pmid: 29643858
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[10] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[11] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[12] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[13] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[14] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[15] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!