欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (3): 423-431.doi: 10.3724/SP.J.1006.2020.91046

• 耕作栽培·生理生化 • 上一篇    下一篇

播种方式与种植密度互作对大穗型小麦品种产量和氮素利用率的调控效应

郑飞娜,初金鹏,张秀,费立伟,代兴龙(),贺明荣()   

  1. 山东农业大学农学院 / 作物生物学国家重点实验室 / 农业农村部作物生理生态与耕作重点实验室, 山东泰安271018
  • 收稿日期:2019-07-07 接受日期:2019-09-26 出版日期:2020-03-12 网络出版日期:2019-10-14
  • 通讯作者: 代兴龙,贺明荣
  • 作者简介:E-mail: fnzheng123@163.com
  • 基金资助:
    本研究由国家重点研发计划项目(2016YFD0300403);国家自然科学基金青年基金(31801298);山东省自然科学基金博士基金项目资助(ZR2018BC034)

Interactive effects of sowing pattern and planting density on grain yield and nitrogen use efficiency in large spike wheat cultivar

Fei-Na ZHENG,Jin-Peng CHU,Xiu ZHANG,Li-Wei FEI,Xing-Long DAI(),Ming-Rong HE()   

  1. College of Agronomy, Shandong Agricultural University / State Key Laboratory of Crop Biology / Key Laboratory of Crop Ecophysiology and Farming System, Ministry of Agriculture and Rural Affairs, Tai’an 271018, Shandong, China
  • Received:2019-07-07 Accepted:2019-09-26 Published:2020-03-12 Published online:2019-10-14
  • Contact: Xing-Long DAI,Ming-Rong HE
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2016YFD0300403);the National Natural Science Foundation of China(31801298);the Natural Science Foundation of Shandong Province(ZR2018BC034)

摘要:

为探明实现冬小麦进一步增产增效的调控途径, 于2015—2016年和2016—2017年连续两个生长季, 选用大穗型品种泰农18, 设置2种播种方式(宽幅播种和常规条播)和7个种植密度(130×10 4、200×10 4、270×10 4、340×10 4、410×10 4、480×10 4和550×10 4株 hm -2), 研究了播种方式与种植密度互作对大穗型小麦品种产量和氮素利用率的调控效应。结果表明, 与常规条播相比, 宽幅播种配合增密能够有效缓解单位面积穗数增加与单穗粒重降低、氮素吸收效率提高与氮素内在利用效率下降之间的矛盾, 通过增加单位面积穗数和氮素吸收效率协同提高籽粒产量和氮素利用率。宽幅播种条件下获得最高产量和氮素利用率的密度为410×10 4株 hm -2, 显著高于常规条播条件下的最优密度(340×10 4株 hm -2), 且其增产增效幅度亦显著高于常规条播。综上所述, 宽幅播种配合合理密植具有进一步协同提高大穗型小麦品种产量和氮素利用率的潜力。在本试验条件下, 宽幅播种(苗带宽8~10 cm)与410×10 4株 hm -2密度相匹配是大穗型小麦品种泰农18获得更高产高效的最优组合。

关键词: 宽幅播种, 种植密度, 互作效应, 产量, 氮素利用率

Abstract:

In order to find out the way to achieve further improvement in the grain yield (GY) and nitrogen use efficiency (NUE) of winter wheat, two sowing pattern (the wide range sowing and conventional drilling sowing) and seven planting densities (130×10 4, 200×10 4, 270×10 4, 340×10 4, 410×10 4, 480×10 4, and 550×10 4 plants hm -2) were designed during 2015-2016 and 2016-2017 growing seasons. Tainong 18, a winter wheat cultivar with larger spike and lower tillering capacity, was used to investigate the combined effects of sowing pattern and planting density on GY and NUE. Compared with the conventional drilling sowing, the wide range sowing with higher planting density effectively alleviated the negative effect of increasing spikes per unit area and nitrogen uptake efficiency (NUpE) on decreasing single spike weight and nitrogen utilization efficiency (NUtE), respectively. Concurrent improvement in GY and NUE was achieved by increasing the number of spikes per unit area and NUpE. The planting density resulting in the highest GY and NUE under wide range sowing conditions was 410×10 4 plants hm -2, which was significantly higher than that (340×10 4 plants hm -2) under conventional drilling sowing. Moreover, the increase percentage of GY and NUE under wide ranging sowing was also significantly higher than that under drilling sowing. In summary, it is feasible to further improve GY and NUE of large spike wheat cultivar through rational combination of wide range sowing with higher planting density. Under the condition of this experiment, the optimal combination measure for high GY and NUE was sowing width of 8-10 cm with plant density of 410×10 4 plants hm -2.

Key words: wide range sowing pattern, planting density, interaction effect, grain yield, nitrogen use efficiency

表1

2015-2016 和2016-2017 生育季冬小麦播前0~0.20 m和0.20~0.40m土层基础地力"

年份
Year
土层
Soil layer
(m)
容重
Bulk density
(g cm-3)
有机质
Organic matter
(g kg-1)
全氮
Total N
(g kg-1)
碱解氮
Alkali-hydrolysable N
(mg kg-1)
速效磷
Available P
(mg kg-1)
速效钾
Available K
(mg kg-1)
2015-2016 0-0.20 1.33 14.67 1.15 77.98 30.84 90.31
0.20-0.40 1.35 12.25 0.83 33.70 6.63 60.29
2016-2017 0-0.20 1.32 16.98 1.23 60.20 31.24 80.18
0.20-0.40 1.35 13.25 0.90 48.10 6.95 47.62

表2

年份(Y)、播种方式(S)与种植密度(D)对大穗型小麦品种产量、产量构成因素、氮素利用率及其构成因素影响的方差分析"

变异来源
Source of variation
籽粒产量
Grain yield
单位面积穗数
Spikes per unit area
穗粒数
Kernels per spike
千粒重
1000-kernel weight
氮素利用率
NUE
氮素吸收效
率NUpE
氮素内在利用
效率NUtE
Year (Y) 28.72*** 81.09*** 44.55*** 121.76*** 3.63 92.40*** 94.53*
Sowing pattern (S) 261.72*** 76.74*** 1416.26*** 193.30*** 258.20*** 501.13*** 46.44**
Planting density (D) 48.65*** 1483.46*** 5.37* 296.95*** 47.77*** 93.54*** 73.09***
Y×S 27.03*** 2114.91** 5.02*** 2.39*** 28.60*** 19.66** 13.85*
Y×D 1.50 2.56* 481.40*** 669.16*** 0.83 3.13*** 3.77**
S×D 6.01*** 5.35*** 173.65*** 14.27* 5.92*** 7.18*** 12.79***
S×D×Y 0.36 38.54*** 5.82*** 2.82* 0.38 0.18 3.76**

图1

播种方式与种植密度互作对大穗型小麦品种产量的影响 误差线表示3次重复的标准误。"

表3

播种方式与种植密度互作对大穗型小麦品种产量和氮素利用率构成因素的影响"

年份
Year
播种方式
Sowing
pattern
种植密度
Plant density
(×104 plants hm-2)
穗数
Spikes per unit
area (×104 plants hm-2)
穗粒数
Kernels per spike
(No. spike-1)
千粒重
1000-kernel
weight (g)
氮素吸收效率NUpE
(%)
氮素利用效率NUtE
(kg kg-1)
2015-2016 宽幅播种
Wide range
T130 451.05 f 49.40 a 39.96 ef 55.73 i 33.27 b
T200 540.07 de 47.48 bc 39.61 fg 68.23 e 30.70 de
T270 622.61 c 45.63 cd 39.12 h 76.88 d 29.44 fg
T340 696.65 b 43.55 e 38.62 i 83.52 b 28.54 gh
T410 748.65 a 41.57 fg 38.13 ij 86.18 a 28.27 h
T480 778.02 a 38.22 h 37.72 j 81.67 c 28.15 h
T550 783.83 a 35.99 i 37.20 k 76.41 d 27.90 h
传统条播
Drilling
T130 388.67 g 47.95 ab 42.99 a 46.57 j 36.21 a
T200 460.33 f 45.50 d 42.68 a 55.98 hi 33.50 b
T270 529.00 e 43.05 ef 42.17 b 62.71 g 31.92 c
T340 583.33 cd 40.73 g 41.58 c 66.90 e 31.04 cd
T410 600.63 c 38.06 h 41.06 d 65.17 f 30.79 de
T480 608.50 c 35.46 i 40.19 e 61.43 g 29.70 ef
T550 611.03 c 33.02 g 39.36 gh 57.56 h 28.17 h
2016-2017 宽幅播种
Wide range
T130 450.27 h 45.30 bc 42.28 a 63.44 h 29.76 c
T200 554.33 f 44.28 cd 41.01 b 72.36 e 28.32 ef
T270 646.38 d 42.39 e 39.91 c 78.62 d 27.70 fg
T340 699.82 c 41.11 f 38.92 d 83.73 b 27.29 gh
T410 742.96 ab 40.01 g 38.04 ef 85.80 a 27.14 ghi
T480 767.69 a 38.43 h 37.35 gh 83.72 b 26.96 hi
T550 779.03 a 37.33 i 36.84 hi 81.14 c 26.43 i
传统条播Drilling T130 413.99 i 46.92 a 41.19 b 58.00 i 31.92 a
T200 498.27 g 45.70 b 39.95 c 64.28 h 30.61 b
T270 572.71 f 43.71 d 38.59 de 68.96 g 29.91 bc
T340 608.97 de 42.50 e 37.83 fg 72.91 e 29.42 cd
T410 635.73 d 41.25 f 36.63 i 71.66 f 28.96 e
T480 649.79 d 39.31 gh 35.72 j 70.23 fg 27.78 fg
T550 654.84 d 38.30 hi 35.21 j 69.22 g 26.54 i

图2

播种方式与种植密度互作对大穗型小麦品种氮素利用率(NUE)的影响 误差线表示3次重复的标准误。"

图3

播种方式与种植密度互作对大穗型小麦品种穗数和单穗粒重的影响 误差线表示3次重复的标准误。"

图4

播种方式与种植密度互作对大穗型小麦品种氮素吸收效率和氮素内在利用效率的影响 误差线表示3次重复的标准误。"

[1] Tokatlidis I S . Addressing the yield by density interaction is a prerequisite to bridge the yield gap of rain-fed wheat. Ann Appl Biol, 2014,165:27-42.
[2] Dai X L, Zhou X H, Jia D Y, Xiao L L, Kong H B, He M R . Managing the seeding rate to improve nitrogen-use efficiency of winter wheat. Field Crops Res, 2013,154:100-109.
[3] Dai X L, Xiao L L, Jia D Y, Kong H B, Wang Y C, Li C X, Zhang Y, He M R . Increased plant density of winter wheat can enhance nitrogen-uptake from deep soil. Plant Soil, 2014,384:141-152.
[4] 冯伟, 李世莹, 王永华, 康国章, 段剑钊, 郭天财 . 宽幅播种下带间距对冬小麦衰老进程及产量的影响. 生态学报, 2015,35:2686-2694.
Feng W, Li S Y, Wang Y H, Kang G Z, Duan J Z, Guo T C . Effects of spacing intervals on the ageing process and grain yield in winter wheat under wide bed planting methods. Acta Ecol Sin, 2015,35:2686-2694 (in Chinese with English abstract).
[5] 李世莹, 冯伟, 王永华, 王晨阳, 郭天财 . 宽幅播种带间距对冬小麦冠层特征及产量的影响. 植物生态学报, 2013,37:758-767.
Li S Y, Feng W, Wang Y H, Wang C Y, Guo T C . Effects of spacing interval of wide bed planting on canopy characteristics and yield in winter wheat. Chin J Plant Ecol, 2013,37:758-767 (in Chinese with English abstract).
[6] 初金鹏, 朱文美, 尹立俊, 石玉华, 邓淑珍, 张良, 贺明荣, 代兴龙 . 宽幅播种对冬小麦‘泰农18’产量和氮素利用率的影响. 应用生态学报, 2018,29:2517-2524.
Chu J P, Zhu W M, Yin L J, Shi Y H, Deng S Z, Zhang L, He M R, Dai X L . Effects of wide-range planting on the yield and nitrogen use efficiency of winter wheat cultivar Tainong 18. Chin J Appl Ecol, 2018,29:2517-2524 (in Chinese with English abstract).
[7] 石玉华, 初金鹏, 尹立俊, 贺明荣, 邓淑珍, 张良, 孙晓乐, 田奇卓, 代兴龙 . 宽幅播种提高不同播期小麦产量与氮素利用率. 农业工程学报, 2018,34(17):127-133.
Shi Y H, Chu J P, Yin L J, He M R, Deng S Z, Zhang L, Sun X Y, Tian Q Z, Dai X L . Wide-range sowing improving yield and nitrogen use efficiency of wheat sown at different dates. Trans CSAE, 2018,34(17):127-133 (in Chinese with English abstract).
[8] 杨文平, 郭天财, 刘胜波, 王晨阳, 王永华, 马冬云 . 行距配置对‘兰考矮早八’小麦后期群体冠层结构及其微环境的影响. 植物生态学报, 2008,32:485-490.
Yang W P, Guo T C, Liu S B, Wang C Y, Wang Y H, Ma D Y . Effects of row spacing in winter wheat on canopy structure and microclimate in later growth stage. Chin J Plant Ecol, 2008,32:485-490 (in Chinese with English abstract).
[9] 郭天财, 刘胜波, 冯伟, 杨文平, 王永华, 韩巧霞 . 不同种植行距的大穗型小麦品种‘兰考矮早八’中几种与旗叶衰老有关的生理指标变化. 植物生理学通讯, 2008,44:33-36.
Guo T C, Liu S B, Feng W, Yang W P, Wang Y H, Han Q X . Changes in several physiological indices related to senescence in flag leaves of heave-ear wheat ‘Lankao’aizao 8’ with different row spacing. Plant Physiol Commum, 2008,44:33-36 (in Chinese with English abstract).
[10] 郭天财, 盛坤, 冯伟, 徐丽娜, 王晨阳 . 种植密度对两种穗型小麦品种分蘖期茎蘖生理特性的影响. 西北植物学报, 2009,29:350-355.
Guo T C, Sheng K, Feng W, Xu L N, Wang C Y . Effects of plant density on physiological characteristics of different stems during tillering stage in two spike-types winter wheat cultivars. Acta Bot Boreal-Occident Sin, 2009,29:350-355 (in Chinese with English abstract).
[11] Moll R H, Kamprath E J, Jackson W A . Analysis and interpretation of factors which contribute to efficiency to nitrogen utilization. Agron J, 1982,75:562-564.
[12] 申建波, 毛达如 . 植物营养学研究方法(第3版). 北京: 中国农业大学出版社, 2011. pp 52-53.
Shen J B, Mao D R. Research Methods of Plant Nutrition, 3rd edn. Beijing: China Agricultural University Press, 2011. pp 52-53(in Chinese).
[13] Ma S C, Wang T C, Guan X K, Zhang X . Effect of sowing time and seeding rate on yield components and water use efficiency of winter wheat by regulating the growth redundancy and physiological traits of root and shoot. Field Crops Res, 2018,221:166-174.
[14] Melash A A, Mengistu D K, Aberra D A, Tsegay A . The influence of seeding rate and micronutrients foliar application on grain yield and quality traits and micronutrients of durum wheat. J Cereal Sci, 2019,85:221-227.
[15] Tao Z Q, Ma S K, Chang X H, Wang D M, Wang Y J, Yang Y S, Zhao G C, Yang J C . Effects of tridimensional uniform sowing on water consumption, nitrogen use, and yield in winter wheat. Crop J, 2019. 7:480-493.
[16] Zhu Y G, Chu J P, Dai X L, He M R . Delayed sowing increases grain number by enhancing spike competition capacity for assimilates in winter wheat. Eur J Agron, 2019,104:49-62.
[17] Chen C, Neill K, Wichman D, Westcott M . Hard red spring wheat response to row spacing, seeding rate, and nitrogen. Agron J, 2008,100:1296-1302.
[18] Carr P M, Horsley R D, Poland W W . Tillage and seeding rate effects on wheat cultivars: I. Grain production. Crop Sci, 2003,43:202-209.
[19] Lloveras J, Manent J, Viudas J, López A, Santiveri P . Seeding rate influence on yield and yield components of irrigated winter wheat in a Mediterranean climate. Agron J, 2004,96:1258-1265.
[20] 张永丽, 肖凯, 李雁鸣 . 种植密度对杂种小麦C6-38/Py85-1旗叶光合特性和产量的调控效应及其生理机制. 作物学报, 2005,31:498-505.
Zhang Y L, Xiao K, Li Y M . Effects and physiological mechanism of planting densities on photosynthesis characteristics of flag leaf and grain yield in wheat hybrid C6-38/Py85-1. Acta Agron Sin, 2005,31:498-505 (in Chinese with English abstract).
[21] 陈雨海, 余松烈, 于振文 . 小麦生长后期群体光截获量及其分布与产量的关系. 作物学报, 2003,29:730-734.
Chen Y H, Yu S L, Yu Z W . Relationship between amount or distribution of PAR interception and grain output of wheat communities. Acta Agron Sin, 2003,29:730-734 (in Chinese with English abstract).
[22] Yang D Q, Cai T, Luo Y L, Wang Z L . Optimizing plant density and nitrogen application to manipulate tiller growth and increase grain yield and nitrogen-use efficiency in winter wheat. Peer J: Life Environ, 2019,7:e6468.
[23] 曹倩, 贺明荣, 代兴龙, 门洪文, 王成雨 . 密度、氮肥互作对小麦产量及氮素利用效率的影响. 植物营养学与肥料学报, 2011,17:815-822.
Cao Q, He M R, Dai X L, Men H W, Wang C Y . Effects of interaction between density and nitrogen on grain yield and nitrogen use efficiency of winter wheat. Plant Nutr Fert Sci, 2011,17:815-822 (in Chinese with English abstract).
[24] Foulkes M J, Hawkesford M J, Barraclough P B, Holdsworth M J, Kerr S, Kightley S, Shewry P R . Identifying traits to improve the nitrogen economy of wheat: Recent advances and future prospects. Field Crops Res, 2009,114:329-342.
[25] Salvagiotti F, Castellarin J M, Miralles D J, Pedrol H M . Sulfur fertilization improves nitrogen use efficiency in wheat by increasing nitrogen uptake. Field Crops Res, 2009,113:170-177.
[26] Dai X L, Wang Y C, Dong X C, Qian T F, Yin L J, Dong S X, Chu J P, He M R . Delayed sowing can increase lodging resistance while maintaining grain yield and nitrogen use efficiency in winter wheat. Crop J, 2017,5:541-552.
[27] Sadras V O, Lawson C . Nitrogen and water-use efficiency of Australian wheat varieties released between 1958 and 2007. Eur J Agron, 2013,46:34-41.
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[12] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[13] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[14] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[15] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!