作物学报 ›› 2021, Vol. 47 ›› Issue (4): 599-612.doi: 10.3724/SP.J.1006.2021.04152
李鹏程1,2(), 毕真真1,2(), 孙超1,2, 秦天元1,2, 梁文君1,2, 王一好1,2, 许德蓉1,2, 刘玉汇1,2, 张俊莲1,2, 白江平1,2,*()
LI Peng-Cheng1,2(), BI Zhen-Zhen1,2(), SUN Chao1,2, QIN Tian-Yuan1,2, LIANG Wen-Jun1,2, WANG Yi-Hao1,2, XU De-Rong1,2, LIU Yu-Hui1,2, ZHANG Jun-Lian1,2, BAI Jiang-Ping1,2,*()
摘要:
植物受到干旱胁迫时, 会通过DNA甲基化做出快速反应以帮助其应对胁迫。为探究在干旱胁迫下, DNA甲基化是如何影响基因转录表达, 本研究对甘露醇模拟干旱和5-azadC (去甲基化)处理下, 抗旱性不同的2个马铃薯品种(抗旱型, 青薯9号; 干旱敏感型, 大西洋)进行转录组学分析, 以Fold-change > 2和校正后P < 0.01进行差异表达基因(DEG)的筛选。GO富集分析发现, 2种处理都共同显著富集到氧化应激和碳水化合物代谢过程相关的GO term。说明不同耐旱性马铃薯在响应干旱胁迫时, 与这些GO term相关的基因也受DNA去甲基化调控。对既响应干旱又响应DNA去甲基化的1345个DEG进行KEGG功能富集发现, 与植物抗旱相关的通路有植物MAPK信号途径、植物激素信号转导途径、植物谷胱甘肽代谢通路、糖酵解与糖异生和磷酸肌醇代谢通路。说明这些通路相关基因在大西洋和青薯9号2个抗旱性不同的马铃薯品种中, 响应干旱的敏感性受DNA甲基化调控。接着对DEG上游1500 bp启动子区域进行顺式作用原件和甲基化CpG岛分析发现, 干旱胁迫下参与植物谷胱甘肽代谢的GST基因通过DNA去甲基化来降低启动子区ABRE和CAAT-box作用元件的甲基化水平, 进而激活该基因的表达以应对干旱胁迫。因此, 利用比较转录组学分析干旱和DNA去甲基化处理下的差异基因, 可挖掘到DNA甲基化参与调控马铃薯响应干旱胁迫的相关基因, 为研究马铃薯干旱胁迫响应的表观遗传学机理提供新的研究思路。
[1] | 余林辉, 蔡晓腾, 徐萍, 向成斌. 植物抗旱节水: 从实验室到田间. 中国科学: 生命科学, 2017,47:145-154. |
Yu L H, Cai X T, Xu P, Xiang C B. Drought resistant and water-saving plants: from laboratory to field. Sci Sin (Vitae), 2017,47:145-154 (in Chinese with English abstract). | |
[2] | Fang Y, Xiong L. General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci, 2015,72:673-689. |
[3] | 刘玉冰, 李新荣, 李蒙蒙, 刘丹, 张雯莉. 中国干旱半干旱区荒漠植物叶片(或同化枝)表皮微形态特征. 植物生态学报, 2016,40:1189-1207. |
Liu Y B, Li X R, Li M M, Liu D, Zhang W L. Leaf (or assimilation branch) epidermal micromorphology of desert plant in arid and semi-arid areas of China. Chin J Plant Ecol, 2016,40:1189-1207 (in Chinese with English abstract). | |
[4] | 朱健康, 倪建平. 植物非生物胁迫信号转导及应答. 中国稻米, 2016,22(6):52-60. |
Zhu J K, Ni J P. Abiotic stress signaling and responses in plants. China Rice, 2016,22(6):52-60 (in Chinese with English abstract). | |
[5] | 余斌, 杨宏羽, 王丽, 刘玉汇, 白江平, 王蒂, 张俊莲. 引进马铃薯种质资源在干旱半干旱区的表型性状遗传多样性分析及综合评价. 作物学报, 2018,44:63-74. |
Yu B, Yang H Y, Wang L, Liu Y H, Bai J P, Wang D, Zhang J L. Genetic diversity analysis and comprehensive assessment of phenotypic traits in introduced potato germplasm resources in arid and semi-arid area. Acta Agron Sin, 2018,44:63-74 (in Chinese with English abstract). | |
[6] | Banerjee A, Roychoudhury A. Epigenetic regulation during salinity and drought stress in plants: histone modifications and DNA methylation. Plant Gene, 2017,11:199-204. |
[7] | Pikaard C S, Mittelsten S O. Epigenetic regulation in plants. Cold Spring Harb Perspect Biol, 2014,6:a019315. |
[8] |
Vanyushin B F, Ashapkin V V. DNA methylation in higher plants: past, present and future. Biochim Biophys Acta, 2011,1809:360-368.
doi: 10.1016/j.bbagrm.2011.04.006 pmid: 21549230 |
[9] |
Gallusci P, Hodgman C, Teyssier E, Seymour G B. DNA methylation and chromatin regulation during fleshy fruit development and ripening. Front Plant Sci, 2016,7:807.
pmid: 27379113 |
[10] | 赵云雷, 叶武威, 王俊娟, 樊保香, 宋丽艳. DNA甲基化与植物抗逆性研究进展. 西北植物学报, 2009,29:1479-1489. |
Zhao Y L, Ye W W, Wang J J, Fan B X, Song L Y. Review of DNA methylation and plant stress-tolerance. Acta Bot Boreali- Occident Sin, 2009,29:1479-1489 (in Chinese with English abstract). | |
[11] | Fei Y, Xue Y, Du P, Yang S, Deng X. Expression analysis and promoter methylation under osmotic and salinity stress of TaGAPC1 in wheat(Triticum aestivum L). Protoplasma, 2017,254:987-996. |
[12] | McLoughlin F, Arisz S A, Dekker H L, Kramer G, de Koster C G, Haring M A, Munnik T, Testerink C. Identification of novel candidate phosphatidic acid-binding proteins involved in the salt-stress response of Arabidopsis thaliana roots. Biochem J, 2013,450:573-581. |
[13] | Liang D, Zhang Z, Wu H, Huang C, Shuai P, Ye C Y, Tang S, Wang Y, Yang L, Wang J. Single-base-resolution methylomes of Populus trichocarpa reveal the association between DNA methylation and drought stress. BMC Genet, 2014,15:S9. |
[14] | Abid G, Mingeot D, Muhovski Y, Mergeai G, Aouida M, Abdelkarim S, Aroua I, El Ayed M, M’hamdi M, Sassi K. Analysis of DNA methylation patterns associated with drought stress response in faba bean ( Vicia faba L.) using methylation-sensitive amplification polymorphism (MSAP). Environ Exp Bot, 2017,142:34-44. |
[15] | 李鹏程, 毕真真, 梁文君, 孙超, 张俊莲, 白江平. DNA甲基化参与调控马铃薯干旱胁迫响应. 作物学报, 2019,45:1595-1603 |
Li P C, Bi Z Z, Liang W J, Sun C, Zhang J L, Bai J P. DNA methylation involved in regulating drought stress response of potato. Acta Agron Sin, 2019,45:1595-1603 (in Chinese with English abstract). | |
[16] |
Garg R, Shankar R, Thakkar B, Kudapa H, Krishnamurthy L, Mantri N, Varshney R K, Bhatia S, Jain M. Transcriptome analyses reveal genotype- and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. Sci Rep, 2016,6:19228.
pmid: 26759178 |
[17] | Zhou Y, Yang P, Cui F, Zhang F, Luo X, Xie J. Transcriptome analysis of salt stress responsiveness in the seedlings of Dongxiang wild rice ( Oryza rufipogon Griff.). PLoS One, 2016,11:e0146242. |
[18] | Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, Vilo J. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res, 2019,47:W191-W198. |
[19] | Li L C, Dahiya R. MethPrimer: designing primers for methylation PCRs. Bioinformatics, 2002,18:1427-1431. |
[20] | Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002,30:325-327. |
[21] | 李艳, 钱伟强. 植物中DNA甲基化及去甲基化研究进展. 生命科学, 2017,29:302-309. |
Li Y, Qian W Q. Mechanisms of DNA methylation and demethylation in plants. Chin Bull Life Sci, 2017,29:302-309 (in Chinese with English abstract). | |
[22] | Golldack D, Li C, Mohan H, Probst N. Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci, 2014,5:151. |
[23] | 王凯悦, 陈芳泉, 黄五星. 植物干旱胁迫响应机制研究进展. 中国农业科技导报, 2019,21(2):19-25. |
Wang K Y, Chen F Q, Huang W X. Research advance on drought stress response mechanism in plants. J Agric Sci Technol, 2019,21(2):19-25 (in Chinese with English abstract). | |
[24] | Molina C, Rotter B, Horres R, Udupa S M, Besser B, Bellarmino L, Baum M, Matsumura H, Terauchi R, Kahl G, Winter P. SuperSAGE: the drought stress-responsive transcriptome of chickpea roots. BMC Genomics, 2008,9:553. |
[25] | Ha C V, Leyva-Gonzalez M A, Osakabe Y, Tran U T, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Yamaguchi S, Dong N V, Yamaguchi-Shinozaki K, Shinozaki K, Herrera-Estrella L, Tran L S. Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc Natl Acad Sci USA, 2014,111:851-856. |
[26] |
Verma V, Ravindran P, Kumar P P. Plant hormone-mediated regulation of stress responses. BMC Plant Biol, 2016,16:86.
doi: 10.1186/s12870-016-0771-y |
[27] |
Jain M, Khurana J P. Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS J, 2009,276:3148-3162.
doi: 10.1111/j.1742-4658.2009.07033.x pmid: 19490115 |
[28] | 陈坤明, 宫海军, 王锁民. 植物谷胱甘肽代谢与环境胁迫. 西北植物学报, 2004,24:1119-1130. |
Chen K M, Gong H J, Wang S M. Glutathione metabolism and environmental stresses in plants. Acta Bot Boreali-Occident Sin, 2004,24:1119-1130 (in Chinese with English abstract). | |
[29] | Li Z, Yu J, Peng Y, Huang B. Metabolic pathways regulated by abscisic acid, salicylic acid and gamma-aminobutyric acid in association with improved drought tolerance in creeping bentgrass ( Agrostis stolonifera). Physiol Plant, 2017,159:42-58. |
[30] |
Xu J, Xing X J, Tian Y S, Peng R H, Xue Y, Zhao W, Yao Q H. Transgenic Arabidopsis plants expressing tomato glutathione S-transferase showed enhanced resistance to salt and drought stress. PLoS One, 2015,10:e0136960.
doi: 10.1371/journal.pone.0136960 pmid: 26327625 |
[31] | 孟大伟, 王悦, 李沛璇, 赵宇威, 周瑶, 韩玉, 郎晨婧, 金太成, 杨丽萍. 干旱诱导AtGSTF14基因DNA去甲基化. 分子植物育种, 2020,18:6108-6113. |
Meng D W, Wang Y, Li P X, Zhao Y W, Zhou Y, Han Y, Lang C J, Jin T C, Yang L P. Drought-introduced DNA demethylation of AtGSTF14 gene. Mol Plant Breed, 2020,18:6108-6113 (in Chinese with English abstract). |
[1] | 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278. |
[2] | 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297. |
[3] | 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198. |
[4] | 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907. |
[5] | 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929. |
[6] | 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694. |
[7] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
[8] | 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258. |
[9] | 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98. |
[10] | 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85. |
[11] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
[12] | 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653. |
[13] | 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790. |
[14] | 张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805. |
[15] | 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258. |
|