欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (4): 780-786.doi: 10.3724/SP.J.1006.2021.04122

• 研究简报 • 上一篇    

马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析

秦天元1,2(), 刘玉汇1,2, 孙超1,2, 毕真真1,2, 李安一3, 许德蓉1,2, 王一好1,2, 张俊莲1, 白江平1,2,*()   

  1. 1甘肃省干旱生境作物学重点实验室 / 甘肃省作物遗传改良与栽培种创新重点实验室, 甘肃兰州 730070
    2甘肃农业大学农学院, 甘肃兰州 730070
    3兰州大学草地农业科技学院 / 草地农业生态系统国家重点实验室, 甘肃兰州 730020
  • 收稿日期:2020-06-04 接受日期:2020-10-14 出版日期:2021-04-12 网络出版日期:2020-11-06
  • 通讯作者: 白江平
  • 作者简介:E-mail: 1637835362@qq.com
  • 基金资助:
    国家自然科学基金项目(31660432);国家现代农业产业技术体系建设专项(CARS-09-P14);甘肃省马铃薯产业体系(GARS-03-P1);甘肃省创新能力提升项目(2019B-073);甘肃省科技计划项目(19ZD2WA002-02);甘肃省科技计划项目(18JR3RA174);甘肃农业大学国重实验室开放基金(GSCS-2017-9);甘肃农业大学创新基金项目(GAU-XKJS-2018-085)

Identification of StIgt gene family and expression profile analysis of response to drought stress in potato

QIN Tian-Yuan1,2(), LIU Yu-Hui1,2, SUN Chao1,2, BI Zhen-Zhen1,2, LI An-Yi3, XU De-Rong1,2, WANG Yi-Hao1,2, ZHANG Jun-Lian1, BAI Jiang-Ping1,2,*()   

  1. 1Gansu Provincial Key Lab of Aridland Crop Science / Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Lanzhou 730070, Gansu, China
    2College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    3College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, Gansu, China
  • Received:2020-06-04 Accepted:2020-10-14 Published:2021-04-12 Published online:2020-11-06
  • Contact: BAI Jiang-Ping
  • Supported by:
    National Natural Science Foundation of China(31660432);China Agriculture Research System(CARS-09-P14);Gansu Province Potato Industry System(GARS-03-P1);Gansu Provincial Education Department(2019B-073);Gansu Provincial Science and Technology Department(19ZD2WA002-02);Gansu Provincial Science and Technology Department(18JR3RA174);Key Laboratory of Arid Land Crop Science of Gansu Agricultural University(GSCS-2017-9);Innovation Fund of Gansu Agricultural University(GAU-XKJS-2018-085)

摘要:

干旱胁迫是影响马铃薯产量和品质的主要非生物胁迫因素之一。马铃薯在抵御干旱胁迫的过程中, 根系的生长发育和构型分布发挥着重要作用。Igt基因家族是普遍存在于植物中的一类功能基因, 在调控植物根系构型和提高植株抗逆性等方面效果显著。本研究以马铃薯双单倍体‘DM-v4.03’高质量基因组为参考, 在全基因组范围内分析鉴定了StIgt基因家族的成员, 并采用多种生物信息学软件对其进行了系统进化树构建、染色体定位、保守蛋白结构域、基因结构和顺式元件预测。同时, 利用本课题组前期对马铃薯四倍体品系在不同干旱条件下的转录组测序结果, 分析了StIgts响应干旱胁迫的表达谱。结果表明, 在马铃薯中共鉴定获得10个StIgt家族成员, 其中StIgt1由本课题组前期克隆获得。除StIgt1位置信息不明外, 其余基因不均匀地分布在1、2、5、7、10和11号染色体上。StIgt家族蛋白长度为110~283个氨基酸, 分子量介于13.136~32.542 kD之间, 预测等电点为3.82~9.86。系统进化树分析发现, 该基因家族可分为3个亚族, 亚族间的基因结构、蛋白保守域和顺式作用元件差别明显。干旱胁迫下的表达谱分析表明, StIgt6、StIgt7、StIgt9StIgt10响应早期干旱胁迫, 在干旱2 h时即迅速上调表达。这些结果为阐明StIgt基因家族的进化关系和进一步研究其成员的功能特性提供了理论基础。

关键词: 全基因组, 马铃薯, StIgt基因家族, 干旱胁迫, 表达谱分析

Abstract:

Drought stress is one of the main abiotic stress factors affecting potato yield and quality. The root growth, development and architecture play an important role in potato drought resistance. The Igt gene family is a functional gene family that are ubiquitous in plants, and has significant effects in regulating root architecture and improving plant stress resistance. In this study, the potato double haploid ‘DM-v4.03’ high-quality genome was used as a reference, and members of the StIgt gene family were identified and analyzed on a genome-wide scale. Phylogenetic trees, chromosomal location, conservative protein domains, gene structure and cis element prediction were carried out by bioinformatics software. Meanwhile, the expression profiles of StIgts in response to drought stress were analyzed based on the transcriptome sequencing results of potato tetraploid lines under different drought conditions. The results showed that a total of 10 StIgt family members were identified in potato, of which StIgt1 was obtained and cloned by our research group. Except for the unknown position information of StIgt1, the remaining genes are unevenly distributed on chromosome 1, 2, 5, 7, 10, and 11. StIgts proteins range in length from 110 to 283 amino acids and have molecular weights ranging from 13.136 kD to 32.542 kD. The predicted isoelectric point is 3.82 to 9.86. Phylogenetic tree analysis revealed that the gene family can be divided into three subfamilies. The gene structure, protein conserved domains and cis-acting elements differ significantly among three subfamilies. The expression profile analysis under drought stress showed that StIgt6, StIgt7, StIgt9 and StIgt10 responded to the early drought stress which rapidly up-regulated at two hours of drought treatment. These results provide a theoretical basis for elucidating the evolutionary relationship of the StIgt gene family and further studying the functional characteristics of its members.

Key words: genome-wide, potato, StIgt gene family, drought stress, gene expression analyses

表1

拟南芥、桃、玉米与水稻Igt基因登录号"

基因名称
Gene name
基因登录号
GenBank No.
基因名称
Gene name
基因登录号
GenBank No.
AtDro1 AT1G72490 AtLazy6 AT3G27025
AtDro2 AT1G19115 PpeLazy1 LOC18782538
AtDro3 AT1G17400 PpeLazy2 LOC18790006
OsDro1 BAN59748.1 ZmLazy LOC100193776
PpeDro1 LOC103327608 OsLazy1 LOC4350543
PpeDro2 LOC18770522 PpeTac1 LOC18773917
AtLazy1 AT5G14090 Ostac1 LOC4347655
AtLazy5 AT3G24750 AtTac1 AT2G46640

表2

马铃薯StIgt基因家族信息"

基因名称
Gene name
基因ID
Gene ID
亚组
Group
染色体位置
Chromosome location
大小
Size
分子量
MW (kD)
等电点
pI
StIgt10 PGSC0003DMG400042006 I chr11: 19822270-19822602 110 13,136.1 9.86
StIgt9 PGSC0003DMG400035280 I chr01: 12153224-12154281 139 15,371.1 4.61
StIgt8 PGSC0003DMG400020205 I chr02: 48071799-48076548 256 29,350.3 6.41
StIgt7 PGSC0003DMG401019811 I chr05: 15169941-15172623 255 27,797.7 5.41
StIgt6 PGSC0003DMG400041371 II chr07: 26993146-27002422 275 31,382.8 4.38
StIgt5 PGSC0003DMG400005529 II chr10: 5159202-5164672 281 32,338.2 5.15
StIgt4 PGSC0003DMG400022847 II chr01: 59885567-59885980 137 15,989.9 3.82
StIgt3 PGSC0003DMG400000126 II chr01: 73826302-73827911 221 24,499.6 5.38
StIgt2 PGSC0003DMG400016036 III chr07: 39417955-39420740 228 26,123 6.17
StIgt1 StDro1 III 未知Unknown 283 32,542.3 6.68

图1

基于马铃薯和其他物种Igt基因家族系统进化树"

图2

马铃薯StIgt基因家族成员的蛋白保守域和基因结构 A: 蛋白结构域特征; B: 基因结构。"

图3

马铃薯StIgts的染色体定位(A)和顺式作用元件分析(B) ABRE: 脱落酸作用元件; ERE: 参与防御和应激反应的作用元件; MBS: 干旱胁迫反应元件; TCA-element: 水杨酸作用元件; TGA-element: 生长素响应元件; W-box: 胁迫响应元件。"

图4

马铃薯StIgt基因在不同干旱胁迫时间下的表达模式分析"

图5

干旱胁迫时间下马铃薯StIgt1、StIgt3和StIgt10基因的表达 *, **分别表示在0.05和0.01水平上显著差异。"

[1] Boguszewskamańkowska D, Zarzyńska K, Nosalewicz A. Drought differentially affects root system size and architecture of potato cultivars with differing drought tolerance. Am J Potato Res, 2019,97:54-62.
doi: 10.1007/s12230-019-09755-2
[2] Guoju Q, Zhengji Z, Fengju M, Runyuan W. Influence of increased temperature on the potato yield and quality in a semiarid district of northwest china. Acta Ecol Sin, 2015,35:830-836.
[3] Devaux A, Haverkort A J. The effects of shifting planting dates and mulching on late blight ( Phytophthora infestans) and drought stress of potato crops grown under tropical highland conditions. Exp Agric, 2008,23:325-333.
doi: 10.1017/S001447970001721X
[4] Shuangyuan C. Growth and yield response of different crops sowing after potato ( Solanum tuberosum L.) harvest in Kunming area. J Anhui Agric Sci, 2013,41:3794-3796.
[5] Farooq M, Wahid A, Kobayashi N, Fujita D S M A. Plant drought stress: effects, mechanisms and management to cite this version: review article. Agron Sustain Dev, 2009,29:185-212.
doi: 10.1051/agro:2008021
[6] Raza M A S, Shahid A M, Saleem M F. Effects and management strategies to mitigate drought stress in oilseed rape ( Brassica napus L.): a review. Zemdirbyste, 2017,104:85-94.
[7] Siddiqui M H, Al-Khaishany M Y, Al-Qutami M A, Al-Whaibi M H, Grover A, Ali H M, Al-Wahibi M S, Bukhari N A. Response of different genotypes of faba bean plant to drought stress. Int J Mol Sci, 2015,16:10214-10227.
doi: 10.3390/ijms160510214 pmid: 25950766
[8] Hollender C A, Dardick C. Molecular basis of angiosperm tree architecture. New Phytol, 2015,206:541-556.
doi: 10.1111/nph.13204 pmid: 25483362
[9] Uga Y, Sugimoto K, Ogawa S. Control of root system architecture by deeper rooting 1 increases rice yield under drought conditions. Nat Genet, 2013,45:1097-1102.
doi: 10.1038/ng.2725 pmid: 23913002
[10] Arai-Sanoh Y, Takai T, Yoshinaga S, Nakano H, Kojima M, Sakakibara H, Kondo M, Uga Y. Deep rooting conferred by deeper rooting 1 enhances rice yield in paddy fields. Sci Rep, 2014,4:5544-5563.
[11] Guseman J M, Webb K, Srinivasan C. DRO1 influences root system architecture in Arabidopsis and Prunus species. Plant J, 2017,89:1093-1105.
pmid: 28029738
[12] Dardick C, Callahan A, Horn R. Ppetac1 promotes the horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species. Plant J, 2013,75:618-630.
doi: 10.1111/tpj.12234 pmid: 23663106
[13] Coste A T, Karababa M, Ischer F, Bille J, Sanglard D. TAC1 transcriptional activator of CDR genes is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2. Eukaryot Cell, 2004,6:1639-1652.
[14] Yu B, Lin Z, Li H. TAC1: a major quantitative trait locus controlling tiller angle in rice. Plant J, 2008,52:891-898.
pmid: 17908158
[15] Li P, Wang Y, Qian Q. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res, 2007,17:327-327.
[16] Dong Z, Jiang C, Chen X, Zhang T. Maize lazy1 mediates shoot gravitropism and inflorescence development through regulating auxin transport, auxin signaling and light response. Plant Physiol, 2013,163:1306-1322.
pmid: 24089437
[17] Altschul S F, Madden T L, Schäffer A A. Gapped blast and psi-blast: a new generation of protein databases search programs. Nucleic Acids Res, 1997,25:3389-3402.
pmid: 9254694
[18] Aron M B, Derbyshire M K, Gonzales N R. CDD: NCBI’s conserved domain database. Nucleic Acids Res, 2014,43:222-226.
[19] Finn R D, Alex B, Jody C. Pfam: the protein families database. Nucleic Acids Res, 2014,42:222-230.
[20] Thompson J D, Gibson T J, Higgins D G. Multiple sequence alignment using clustalw and clustalx. Curr Protoc Bioinf, 2003,23:1-22.
[21] Kumar S, Stecher G, Tamura K. Mega 7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016,33:1870-1874.
[22] Bailey T L, Nadya W, Chris M. Meme: discovering and analyzing dna and protein sequence motifs. Nucleic Acids Res, 2006,34:369-373.
[23] Madke S S, Cherian K J, Badere R S. A modified Murashige and Skoog media for efficient multipleshoot induction in G. arborea Roxb. J For Res, 2014,3:557-564.
[24] Eiasu B K, Soundy P, Hammes P S. Response of potato ( Solanum tuberosum L.) tuber yield components to gelpolymer soil amendments and irrigation regimes. Crop Hortic, 2007,35:25-31.
[25] Walworth J L, Carling D E. Tuber initiation and development in irrigated and nonirrigated potatoes. Am J Potato Res, 2002,79:387-395.
[26] Lopes M S, Reynolds M P. Partitioning of assimilates to deeper roots is associated with cooler canopies and increased yield under drought in wheat. Funct Plant Biol, 2010,37:147-156.
[27] Lynch J P. Steep cheap and deep: an ideotype to optimize water and nacquisition by maize root systems. Ann Bot, 2013,112:347-357.
[28] Villordon A Q, Ginzberg I, Firon N. Root architecture and root and tuber crop productivity. Trends Plant Sci, 2014,19:419-425.
pmid: 24630073
[29] Roychoudhry S, Kepinski S. Shoot and root branch growth angle control the wonderfulness of lateralness. Curr Opin Plant Biol, 2015,23:124-131.
[30] Yoshihara T, Spalding E P. LAZY genes mediate the effects of gravity on auxin gradients and plant architecture. Plant Physiol, 2017,175:959-969.
doi: 10.1104/pp.17.00942 pmid: 28821594
[31] Zhang S L, Li D F. The prediction of rice gene by Fgenesh. Agric Sci China, 2008,7:387-394.
[32] Scott M, Madden T L. Blast: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res, 2004,32:20-25.
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278.
[3] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[4] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[5] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[6] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[7] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[8] 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694.
[9] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[10] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[11] 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137.
[12] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[13] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[14] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[15] 张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!