欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (1): 193-202.doi: 10.3724/SP.J.1006.2022.02092

• 耕作栽培·生理生化 • 上一篇    下一篇

田间开放式增温对东北水稻氮素利用的影响

阮俊梅1(), 张俊1, 刘猷红2, 董文军2, 孟英2, 邓艾兴1, 杨万深1, 宋振伟1,*(), 张卫建1   

  1. 1中国农业科学院作物科学研究所 / 农业农村部作物生理生态重点实验室, 北京 100081
    2黑龙江省农业科学院耕作栽培研究所, 黑龙江哈尔滨 150086
  • 收稿日期:2020-12-26 接受日期:2021-04-26 出版日期:2022-01-12 网络出版日期:2021-06-04
  • 通讯作者: 宋振伟
  • 作者简介:E-mail: ruanjmei2016@163.com
  • 基金资助:
    国家重点研发计划项目资助(2017YFD0300104);国家重点研发计划项目资助(2016YFD0300501)

Effects of free air temperature increase on nitrogen utilization of rice in northeastern China

RUAN Jun-Mei1(), ZHANG Jun1, LIU You-Hong2, DONG Wen-Jun2, MENG Ying2, DENG Ai-Xing1, YANG Wan-Shen1, SONG Zhen-Wei1,*(), ZHANG Wei-Jian1   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
    2Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, Heilongjiang, China
  • Received:2020-12-26 Accepted:2021-04-26 Published:2022-01-12 Published online:2021-06-04
  • Contact: SONG Zhen-Wei
  • Supported by:
    National Key Research and Development Program of China(2017YFD0300104);National Key Research and Development Program of China(2016YFD0300501)

摘要:

东北地区是全球气候变暖趋势最为显著的地区之一, 研究预期增温对东北水稻氮素吸收利用的影响, 可为区域水稻可持续生产与氮肥优化管理提供借鉴。本研究于2019—2020年在黑龙江省哈尔滨市设置田间开放式增温(free air temperature increase, FATI)系统, 大田与盆栽试验相结合, 采用15N同位素示踪技术, 模拟预期增温(+1.5℃)对水稻产量、氮素利用以及氮肥去向的影响。结果表明, 增温促进了水稻地上部干物质积累, 与对照相比, 大田与盆栽的水稻产量2年平均分别提高10.4%和10.8%; 增温显著提高了水稻氮素吸收总量, 与对照相比, 2年平均增幅达21.3%, 但增温处理的氮素籽粒利用效率呈降低趋势; 增温处理下水稻从肥料中吸收的氮素显著下降, 但从土壤中吸收的氮素显著增加31.1%, 导致氮肥回收率降低12.5%, 而氮肥损失率增加14.2%。总体来看, 增温有增加水稻籽粒产量的趋势, 但降低了水稻对肥料氮的吸收比例, 导致氮素利用效率降低, 氮肥损失率显著增加。在气候变暖背景下, 建议合理增加水稻移栽密度, 以充分利用温度升高对水稻产量的正向效应, 适当减少氮肥施用量、优化氮肥运筹管理, 提高水稻氮素利用效率。

关键词: 水稻, 气候变暖, 开放式增温, 同位素示踪技术, 氮素吸收与利用, 肥料氮去向

Abstract:

Northeastern China is one of the regions where are experiencing the most significant global warming trend. Revealing the effects of anticipated warming on nitrogen absorption and utilization of rice in northeastern China can provide reference for regional sustainable production of rice and optimal management of nitrogen fertilizer. In this study, the field and pot experiments were setup based on free air temperature increase (FATI) system in Harbin, Heilongjiang province during 2019 to 2020, combined with 15N isotope tracer technique, to investigate the effects of anticipated warming (+1.5℃) on rice yield, nitrogen utilization, and the fate of fertilizer nitrogen. The results showed that warming treatment (W) promoted rice above-ground dry-matter accumulation. The mean grain yields in field and pot experiments during 2019 and 2020 under warming treatment were higher by 10.4% and 10.8% than those under control (CK), respectively. Compared with CK, the mean total nitrogen uptake of two years under W treatment significantly increased by 21.3%, however, the nitrogen utilization efficiency of rice grains showed a decreased trend. Under W treatment, the nitrogen absorbed from fertilizer decreased significantly, while the nitrogen absorbed by rice from soil increased by 31.1%, resulting in the reduction of 12.5% in fertilizer nitrogen recovery rate and the increase of 14.2% in fertilizer nitrogen loss rate. Overall, warming tended to increase rice grain yield, but decreased the proportion of fertilizer nitrogen uptake by plant, which leading to the decrease in nitrogen use efficiency and the significant increase in nitrogen loss rate. Under the background of climate warming, it was suggested to reasonably increase the transplanting density of rice to make full use of the positive effect of global warming on rice yield, as well as appropriately reduce the amount of nitrogen fertilizer application and optimize the management of nitrogen fertilizer operation to improve the nitrogen use efficiency of rice.

Key words: rice, climate warming, FATI, isotope tracer technique, nitrogen absorption and utilization, fate of fertilizer nitrogen

图1

2019年和2020年水稻生育期月平均气温(A)和降水量(B)"

图2

开放式增温系统(A)和增温范围(B) 1: 15N标记盆栽; 2: 远红外加热管; 3: 温度记录仪; 4: 电线; 5: 灯架。"

图3

开放式增温对水稻冠层(A、B)和土壤(C、D)日平均温度的影响(2019年和2020年) CK: 对照; W: 增温。"

表1

增温对全生育期水稻冠层和土壤日平均温度的影响"

年份
Year
处理
Treatment
冠层温度Canopy temperature 土壤温度Soil temperature
日间
Daytime
夜间
Nighttime
全天
Diurnal
日间
Daytime
夜间
Nighttime
全天
Diurnal
2019 对照CK 23.81±0.05 b 17.69±0.05 b 20.89±0.05 b 21.14±0.15 b 18.28±0.04 b 20.23±0.06 b
增温W 25.31±0.19 a 19.96±0.10 a 22.75±0.15 a 22.26±0.05 a 20.44±0.12 a 21.63±0.07 a
Δ 1.50±0.24 2.27±0.15 1.86±0.20 1.12±0.19 1.16±1.11 1.14±0.10
2020 对照CK 24.79±0.03 b 18.92±0.07 b 21.94±0.05 b 22.27±0.01 a 20.68±0.07 b 21.50±0.04 b
增温W 25.41±0.07 a 20.19±0.02 a 22.87±0.03 a 22.83±0.22 a 21.40±0.09 a 22.13±0.16 a
Δ 0.61±0.07 1.26±0.07 0.93±0.06 0.56±0.23 0.72±0.14 0.64±0.19

表2

增温对大田水稻产量及产量构成的影响"

年份
Year
处理
Treatment
穗数
Effect panicles
(×104 hm-2)
穗粒数(粒)
Grains per panicle
千粒重
1000-grain weight
(g)
产量
Yield
(t hm-2)
2019 对照CK 506.67±21.77 a 73.49±2.49 a 19.56±0.51 a 8.30±0.08 b
增温W 520.00±18.86 a 74.29±1.54 a 21.10±0.24 a 9.00±0.10 a
2020 对照CK 458.67±12.12 a 106.92±3.11 a 23.39±0.16 a 10.00±0.32 a
增温W 464.00±26.40 a 113.99±2.48 a 22.46±0.38 a 11.24±0.44 a

表3

增温对盆栽水稻生物量与籽粒产量的影响"

年份
Year
处理
Treatment
根系生物量
Root biomass
秸秆生物量
Straw biomass
籽粒产量
Grain yield
2019 对照CK 161.87±15.01 a 529.71±9.83 b 670.13±8.94 b
增温W 155.82±5.80 a 689.11±28.99 a 761.73±9.00 a
2020 对照CK 208.89±3.55 a 750.84±8.94 b 1074.89±23.06 a
增温W 242.09±17.21 a 814.58±2.47 a 1158.62±8.77 a

表4

增温对水稻氮素吸收与分配的影响"

年份
Year
处理
Treatment
氮素吸收总量
Total N uptake
(g m-2)
植株不同部位氮素吸收量
N uptake by different parts of the plant
(g m-2)
植株不同部位氮素吸收量占比
Ratio of N uptake by different parts of the plant (%)
根系
Root
秸秆
Straw
籽粒
Grain
根系
Root
秸秆
Straw
籽粒
Grain
2019 对照CK 12.33±0.18 b 0.98±0.08 a 4.02±0.18 b 7.32±0.07 b 7.99±0.77 a 32.60±1.05 a 59.42±0.52 a
增温W 15.11±0.22 a 0.92±0.03 a 5.54±0.21 a 8.65±0.03 a 6.09±0.14 a 36.62±0.88 a 57.29±1.02 a
2020 对照CK 17.12±0.43 b 0.99±0.02 a 4.64±0.18 b 11.49±0.25 b 5.77±0.09 a 27.08±0.53 a 67.16±0.45 a
增温W 20.55±0.18 a 1.19±0.09 a 5.71±0.04 a 13.65±0.11 a 5.80±0.38 a 27.78±0.20 a 66.42±0.42 a

图4

增温对氮素收获指数(A)、氮素干物质生产效率(B)和氮素籽粒生产效率(C)的影响 CK: 对照; W: 增温。不同字母表示对照与增温处理间差异显著(P < 0.05)。"

表5

增温对水稻吸收不同来源氮素的影响"

年份
Year
处理
Treatment
氮素来源Source of the N uptake (g m-2) 占比Ratio of the source of N uptake (%)
肥料Fertilizer 土壤Soil 肥料Fertilizer 土壤Soil
2019 对照CK 3.14±0.03 a 9.18±0.19 b 25.52±0.54 a 74.48±0.54 b
增温W 2.69±0.04 b 12.42±0.24 a 17.80±0.44 b 82.20±0.44 a
2020 对照CK 3.10±0.07 a 14.01±0.48 b 18.19±0.81 a 81.81±0.81 b
增温W 2.78±0.06 b 17.77±0.13 a 13.51±0.21 b 86.49±0.21 a

表6

增温对肥料氮素在水稻植株分配的影响"

年份
Year
处理
Treatment
植株不同部位氮素吸收量
N uptake in different parts of the plant (g m-2)
植株不同部位氮素吸收量占比
Ratio of N uptake in different parts of the plant (%)
根系Root 秸秆Straw 籽粒Grain 根系Root 秸秆Straw 籽粒Grain
2019 对照CK 0.24±0.03 a 1.01±0.02 a 1.89±0.03 a 7.69±0.76 a 32.31±1.04 b 60.00±0.32 a
增温W 0.20±0.01 a 1.05±0.06 a 1.44±0.01 b 7.50±0.49 a 38.85±1.54 a 53.66±1.06 b
2020 对照CK 0.17±0.01 a 0.86±0.01 a 2.07±0.06 a 5.45±0.12 a 27.76±0.26 a 66.79±0.46 a
增温W 0.16±0.02 a 0.76±0.03 a 1.85±0.02 b 5.79±0.46 a 27.50±0.50 a 66.71±0.95 a

表7

增温对土壤氮素在水稻植株分配的影响"

年份
Year
处理
Treatment
植株不同部位氮素吸收量
N uptake by different parts of the plant (g m-2)
植株不同部位氮素吸收量占比
Ratio of N uptake by different parts of the plant (%)
根系Root 秸秆Straw 籽粒Grain 根系Root 秸秆Straw 籽粒Grain
2019 对照CK 0.74±0.06 a 3.01±0.16 b 5.44±0.09 b 8.09±0.78 a 32.70±1.09 a 59.22±0.71 a
增温W 0.72±0.03 a 4.49±0.23 a 7.21±0.02 a 5.79±0.17 a 36.10±1.02 a 58.10±1.32 a
2020 对照CK 0.82±0.02 a 3.78±0.19 b 9.42±0.29 b 5.84±0.13 a 26.92±0.61 a 67.24±0.48 a
增温W 1.03±0.07 a 4.94±0.02 a 11.80±0.11 a 5.80±0.37 a 27.82±0.26 a 66.38±0.37 a

图5

增温对肥料氮回收率(A)、肥料氮土壤残存率(B)和肥料氮损失率(C)的影响 CK: 对照; W: 增温。不同字母表示对照与增温处理间差异显著(P < 0.05)。"

[1] Hasselmann K, Barker T. The stern review and the IPCC fourth assessment report: implications for interaction between policymakers and climate experts. An editorial essay.Climatic Change, 2008. 89:219-229.
[2] IPCC. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. UK: Cambridge University Press, 2014. pp 3-29.
[3] IPCC. Special report on global warming of 1.5℃. UK: Cambridge University Press, 2018. pp 175-313.
[4] 杨晓光, 刘志娟, 陈阜. 全球气候变暖对中国种植制度可能影响: I. 气候变暖对中国种植制度北界和粮食产量可能影响的分析. 中国农业科学, 2010, 43:329-336.
Yang X G, Liu Z J, Chen F. The possible effects of global warming on cropping systems in China: I. The possible effects of climate warming on northern limits of cropping systems and crop yields in China. Sci Agric Sin, 2010, 43:329-336 (in Chinese with English abstract).
[5] Schlenker W, Roberts M J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc Natl Acad Sci USA, 2009, 106:15594-15598.
[6] Lobell D B, Burke M B, Tebaldi C, Mastrandrea M D, Falcon W P, Naylor R L. Prioritizing climate change adaptation needs for food security in 2030. Science, 2008, 319:607-610.
[7] Lobell D B, Schlenker W, Costa-Roberts J. Climate trends and global crop production since 1980. Science, 2011, 333:616-620.
[8] Hou R X, Xu X L, Ouyang Z. Effect of experimental warming on nitrogen uptake by winter wheat under conventional tillage versus no-till systems. Soil Tillage Res, 2018, 180:116-125.
[9] Greaver T L, Clark C M, Compton J E, Vallano D, Talhelm A F, Weaver C P, Band L E, Baron J S, Davidson E A, Tague C L, Felker-Quinn E, Lynch J A, Herrick J D, Liu L, Goodale C L, Novak K J, Haeuber R A. Key ecological responses to nitrogen are altered by climate change. Nat Clim Change, 2016, 6:836-843.
[10] Bai E, Li S L, Xu W H, Li W, Dai W W, Jiang P. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytol, 2013, 199:431-440.
[11] Wang X X, Dong S K, Gao Q Z, Zhou H K, Liu S L, Su X K, Li Y Y. Effects of short-term and long-term warming on soil nutrients, microbial biomass and enzyme activities in an alpine meadow on the Qinghai-Tibet Plateau of China. Soil Biol Biochem, 2014, 76:140-142.
[12] Dijkstra F A, Blumenthal D, Morgan J A, Pendall E, Carrillo Y, Follett R F. Contrasting effects of elevated CO2 and warming on nitrogen cycling in a semiarid grassland. New Phytol, 2010, 187:426-437.
[13] Wang B, Li R, Wan Y F, Li Y, Cai W W, Guo C, Qin X B, Song C Y, Wilkes A. Air warming and CO2 enrichment cause more ammonia volatilization from rice paddies: an OTC field study. Sci Total Environ, 2020, 752:142071.
[14] 赵秀兰. 近50年中国东北地区气候变化对农业的影响. 东北农业大学学报, 2010, 41(9):144-149.
Zhao X L. Influence of climate change on agriculture in Northeast China in recent 50 years. J Northeast Agric Univ, 2010, 41(9):144-149 (in Chinese with English abstract).
[15] 张卫建, 陈金, 徐志宇, 陈长青, 邓艾兴, 钱春荣, 董文军. 东北稻作系统对气候变暖的实际响应与适应. 中国农业科学, 2012, 45:1265-1273.
Zhang W J, Chen J, Xu Z Y, Chen C Q, Deng A X, Qian C R, Dong W J. Actual responses and adaptations of rice cropping system to global warming in Northeast China. Sci Agric Sin, 2012, 45:1265-1273 (in Chinese with English abstract).
[16] 陈金, 田云录, 董文军, 侯立刚, 马巍, 徐志宇, 张卫建. 东北水稻生长发育和产量对夜间升温的响应. 中国水稻科学, 2013, 27:84-90.
Chen J, Tian Y L, Dong W J, Hou L G, Ma W, Xu Z Y, Zhang W J. Responses of rice growth and grain yield to nighttime warming in Northeast China. Chin J Rice Sci, 2013, 27:84-90 (in Chinese with English abstract).
[17] 董文军, 邓艾兴, 张彬, 田云录, 陈金, 杨飞, 张卫建. 开放式昼夜不同增温对单季稻影响的试验研究. 生态学报, 2011, 31:2169-2177.
Dong W J, Deng A X, Zhang B, Tian Y L, Chen J, Yang F, Zhang W J. An experimental study on the effects of different diurnal warming regimes on single cropping rice with free air temperature Increased (FATI) facility. Acta Ecol Sin, 2011, 31:2169-2177 (in Chinese with English abstract).
[18] Junk G, Svec H J. The absolute abundance of the nitrogen isotopes in the atmosphere and compressed gas from various sources. Geochim Cosmochim Acta, 1957, 14:234-243.
[19] Guo R Y, Miao W, Fan C Y, Li X G, Shi X Y, Li F M, Qin W. Exploring optimal nitrogen management for high yielding maize in arid areas via15N-labeled technique. Geoderma, 2020, 382:114711.
[20] 江立庚, 曹卫星, 甘秀芹, 韦善清, 徐建云, 董登峰, 陈念平, 陆福勇, 秦华东. 不同施氮水平对南方早稻氮素吸收利用及其产量和品质的影响. 中国农业科学, 2004, 37:490-496.
Jiang L G, Cao W X, Gan X Q, Wei S Q, Xu J J, Dong D F, Chen N P, Lu F Y, Qin H D. Nitrogen uptake and utilization under different nitrogen management and influence on grain yield and quality in rice. Sci Agric Sin, 2004, 37:490-496 (in Chinese with English abstract).
[21] Peng S B, Huang J L, Sheehy J E, Laza R C, Visperas R M, Zhong X H, Centeno G S, Khush G S, Cassman K G. Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA, 2004, 101:9971-9975.
[22] Zhao C, Liu B, Piao S, Wang X, Lobell DB, Huang Y, Huang M, Yao Y, Bassu S, Ciais P, Durand JL, Elliott J, Ewert F, Janssens IA, Li T, Lin E, Liu Q, Martre P, Müller C, Peng S, Peñuelas J, Ruane AC, Wallach D, Wang T, Wu D, Liu Z, Zhu Y, Zhu Z, Asseng S. Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci USA, 2017, 114:9326-9331.
[23] Cai C, Yin X, He S, Jiang W, Si C, Struik P C, Luo W H, Li G, Xie Y T, Xiong Y, Pan G X. Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments. Global Change Biol, 2016, 22:856-874.
[24] Chen C Q, Qian C R, Deng A X, Zhang W J. Progressive and active adaptations of cropping system to climate change in Northeast China. Eur J Agron, 2012, 38:94-103.
[25] Chen J, Chen C G, Tian Y L, Zhang X, Dong W J, Zhang B, Zhang J, Zheng C Y, Deng A X, Song Z W, Peng C R, Zhang W J. Differences in the impacts of nighttime warming on crop growth of rice-based cropping systems under field conditions. Eur J Agron, 2017, 82:80-92.
[26] Kim H Y, Ko J, Kang S, Tenhunen J. Impacts of climate change on paddy rice yield in a temperate climate. Global Change Biol, 2013, 19:548-562.
[27] Kropff M J, Cassman K G, Van Laar H H, Peng S. Nitrogen and yield potential of irrigated rice. Plant Soil, 1993, 155:391-394.
[28] Wang F, Peng S B. Yield potential and nitrogen use efficiency of China's super rice. J Integr Agric, 2017, 16:1000-1008.
[29] Dusenge M E, Duarte A G, Way D A. Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytol, 2019, 221:32-49.
[30] Wang B, Guo C, Wan Y F, Li J L, Ju X T, Cai W W, You S C, Qin X B, Wilkes A, Li Y. Air warming and CO2 enrichment increase N use efficiency and decrease N surplus in a Chinese double rice cropping system. Sci Total Environ, 2020, 706:136063.
[31] 叶全宝, 张洪程, 魏海燕, 张瑛, 汪本福, 夏科, 霍中洋, 戴其根, 许轲. 不同土壤及氮肥条件下水稻氮利用效率和增产效应研究. 作物学报, 2005, 31:1422-1428.
Ye Q B, Zhang H C, Wei H Y, Zhang Y, Wang B F, Xia K, Huo Z Y, Dai Q G, Xu K. Effects of nitrogen fertilizer on nitrogen use efficiency and yield of rice under different soil conditions. Acta Agron Sin, 2005, 31:1422-1428 (in Chinese with English abstract).
[32] Frey S D, Lee J, Melillo J M, Six J. The temperature response of soil microbial efficiency and its feedback to climate. Nat Clim Change, 2013, 3:395-398.
[33] Dai Z M, Yu M J, Chen H H, Zhao H C, Huang Y L, Su W Q, Xia F, Chang S X, Brookes P C, Dahlgren R A, Xu J M. Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems. Global Change Biol, 2020, 26:5267-5276.
[34] Gardner J B, Drinkwater L E. The fate of nitrogen in grain cropping systems: a meta-analysis of 15N field experiments. Ecol Appl, 2009, 19:2167-2184.
[35] Deng M F, Liu L L, Jiang L, Liu W X, Wang X, Li S P, Yang S, Wang B. Ecosystem scale trade-off in nitrogen acquisition pathways. Nat Ecol Evol, 2018, 2:1724-1734.
[36] Liu S W, Zheng Y J, Ma R Y, Yu K, Han Z Q, Xiao S Q, Li Z F, Wu S, Li S Q, Wang J Y, Luo Y Q, Zou J W. Increased soil release of greenhouse gases shrinks terrestrial carbon uptake enhancement under warming. Global Change Biol, 2020, 26:4601-4613.
[37] 刘巽浩, 陈阜. 对氮肥利用效率若干传统观念的质疑. 农业现代化研究, 1990, 11(4):28-34.
Liu X H, Chen F. Questioning some traditional concepts of nitrogen fertilizer use efficiency. Res Agric Modern, 1990, 11(4):28-34 (in Chinese).
[38] Yan M, Pan G, Lavallee J M, Conant R T. Rethinking sources of nitrogen to cereal crops. Global Change Biol, 2020, 26:191-199.
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!