Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (3): 716-725.doi: 10.3724/SP.J.1006.2022.11012

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat

LIU Yun-Jing1(), ZHENG Fei-Na1, ZHANG Xiu1, CHU Jin-Peng1, YU Hai-Tao2, DAI Xing-Long1,*(), HE Ming-Rong1,*()   

  1. 1College of Agronomy, Shandong Agricultural University/State Key Laboratory of Crop Biology/Key Laboratory of Crop Ecophysiology and Farming System, Ministry of Agriculture and Rural Affairs, Tai’an 271018, Shandong, China
    2Weifang Academy of Agricultural Sciences, Weifang 261061, Shandong, China
  • Received:2021-01-29 Accepted:2021-06-16 Online:2021-07-16 Published:2021-07-16
  • Contact: DAI Xing-Long,HE Ming-Rong E-mail:1101307472@qq.com;adaisdny@163.com;mrhe@sdau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2016YFD0300403);Youth Fund Project of National Natural Science Foundation of China(31801298);Funds of Shandong ‘Double Top’ Program(SYL2017YSTD05)

Abstract:

It is well known that wide range sowing can simultaneously improve grain yield (GY) and nitrogen use efficiency (NUE). However, the effects of wide range sowing on grain quality have not been investigated while GY and NUE increased. In the present study, four winter wheat cultivars (Gaoyou 5766, Jimai 44, Taishan 27, and Zhouyuan 9369) were used as experimental materials and two sowing patterns (the wide range sowing and conventional drilling sowing) were designed during 2018-2019 and 2019-2020 growing seasons. Also, we investigated the effects of wide range sowing on GY, NUE, and grain quality. Under wide range sowing, grain number on unit land area were increased by an average of 13.16% across cultivars and growth seasons mainly due to the increase of spike number on unit land area, and in turn GY increased by an average of 13.39%. Meanwhile, nitrogen (N) uptake during whole growth season especially at post-anthesis stage were enhanced. The N accumulation during whole growth season increased by an average of 10.29% while that increased by an average of 36.83% at post-anthesis stage. Consequently, N uptake efficiency and NUE increased by 12.73% and 13.39%, respectively. Enhanced N uptake resulted in a sufficient N supply for grain and a significant increase in grain N accumulation on unit land area. A similar increase magnitude was observed between grain N accumulation (on average 13.38%), grain number (13.16%), and GY (13.39%). As a result, total quantity of N per grain and grain protein concentration remained unchanged, which led to a stable grain protein composition and grain quality. Conclusively, wide range sowing can maintain good grain quality with increased GY and NUE by optimizing coupling of GY formation process with the process of N uptake and translocation.

Key words: wide range sowing, strong gluten wheat, grain yield, grain quality, nitrogen use efficiency

Table 1

Nutrient status in 0-0.20 m and 0.20-0.40 m soil before sowing in 2018-2019 and 2019-2020"

年份
Year
土层
Soil layer
(m)
容重
Bulk density
(g cm-3)
有机质
Organic matter
(g kg-1)
全氮
Total N
(g kg-1)
碱解氮
Alkali-hydrolysable N
(mg kg-1)
速效磷
Available P
(mg kg-1)
速效钾
Available K
(mg kg-1)
2018-2019 0-0.20 1.31 17.80 1.12 84.71 27.84 93.72
0.20-0.40 1.35 13.01 0.88 49.99 15.50 61.54
2019-2020 0-0.20 1.31 16.41 1.14 74.60 30.86 81.61
0.20-0.40 1.35 12.63 0.81 43.22 16.74 47.98

Table 2

Variation analysis of grain yield, quality, and nitrogen use efficiency of strong gluten wheat as affected by growth season (S), cultivar (C), and sowing pattern (P)"

变异来源
Source of variation
籽粒产量
Grain yield
氮素利用率
NUE
蛋白质含量
GPC
单粒含氮量
Ntot
面团稳定时间
Stability time
面包体积
Loaf volume
生长季S 16.32*** 16.26*** 73.96*** 256.06*** 19.66*** 6.40*
品种C 201.58*** 201.47*** 170.89*** 227.54*** 30.86*** 89.64***
播种方式P 514.50*** 514.62*** 0.29 0.03 0.34 1.48
S×C 69.52*** 69.48*** 46.13*** 63.74*** 5.77** 35.30***
C×P 6.95** 6.97** 1.37 0.56 0.24 0.94
S×P 1.96 1.95 1.57 0.27 0.07 0.09
S×C×P 5.95** 5.96** 1.73 0.07 0.44 0.31

Table 3

Effects of sowing pattern on grain yield and its components in strong gluten wheat"

生长季
Growth season
品种
Cultivars
播种方式
Sowing pattern
籽粒产量
Grain yield
(kg hm-2)
穗数
Spike number
(´104 hm-2)
穗粒数
Grains per spike
单位面积粒数
Grains per unit land area
(´104 m-2)
粒重
Grain weight
(mg)
2018-2019 济麦44
Jimai 44
常规条播 Drilling 7045.85 b 522.00 b 35.17 a 1.84 b 44.13 a
宽幅播种 Wide range 8094.86 a 607.11 a 34.47 b 2.09 a 44.47 a
泰山27
Taishan 27
常规条播 Drilling 8388.16 b 571.78 b 42.30 b 2.42 b 39.87 a
宽幅播种 Wide range 9895.95 a 651.55 a 43.58 a 2.84 a 40.06 a
藁优5766
Gaoyou 5766
常规条播 Drilling 8194.36 b 600.67 b 41.75 a 2.51 b 37.57 a
宽幅播种 Wide range 9154.68 a 680.89 a 41.35 a 2.82 a 37.38 a
洲元9369
Zhouyuan 9369
常规条播 Drilling 8557.63 b 490.89 b 53.07 b 2.61 b 37.77 a
宽幅播种 Wide range 9694.96 a 552.00 a 53.65 a 2.96 a 37.63 a
2019-2020 济麦44
Jimai 44
常规条播 Drilling 7663.93 b 733.14 b 31.19 b 2.29 b 38.53 a
宽幅播种 Wide range 8553.62 a 778.63 a 32.62 a 2.54 a 38.73 a
泰山27
Taishan 27
常规条播 Drilling 7684.36 b 608.82 b 44.78 b 2.73 b 32.40 a
宽幅播种 Wide range 8585.19 a 643.89 a 47.29 a 3.04 a 32.42 a
藁优5766
Gaoyou 5766
常规条播 Drilling 8877.50 b 812.75 b 32.23 b 2.62 b 38.96 a
宽幅播种 Wide range 9549.90 a 847.25 a 33.24 a 2.82 a 38.97 a
洲元9369
Zhouyuan 9369
常规条播 Drilling 9011.54 b 769.22 b 33.84 b 2.60 b 39.79 a
宽幅播种 Wide range 10,661.95 a 860.20 a 35.62 a 3.06 a 39.99 a

Fig. 1

Effects of sowing pattern on nitrogen use efficiency and its components in strong gluten wheat Different lowercase letters mean significant difference at the 0.05 probability level. The error bar represents standard error of three replicates."

Table 4

Effects of sowing pattern on grain quality in strong gluten wheat"

生长季
Growth season
品种
Cultivars
播种方式
Sowing pattern
蛋白质含量
GPC
(%)
单粒含氮量
Ntot
(mg grain-1)
湿面筋含量
Wet gluten
(%)
面团稳定时间
Stability time
(min)
面包体积
Loaf volume
(mL)
2018-2019 济麦44
JM44
常规条播 Drilling 15.21 a 1.22 a 36.03 a 15.88 a 918.33 a
宽幅播种 Wide range 15.25 a 1.22 a 37.23 a 16.98 a 927.50 a
泰山27
TS27
常规条播 Drilling 14.06 a 0.97 a 34.27 a 11.18 a 975.83 a
宽幅播种 Wide range 14.11 a 0.97 a 33.97 a 12.69 a 995.00 a
藁优5766
GY5766
常规条播 Drilling 14.35 a 1.04 a 35.50 a 26.40 a 843.33 a
宽幅播种 Wide range 14.44 a 1.03 a 37.23 a 26.66 a 883.33 a
洲元9369
ZY9369
常规条播 Drilling 13.94 a 1.07 a 38.10 a 12.19 a 850.83 a
宽幅播种 Wide range 13.84 a 1.10 a 37.87 a 12.10 a 844.17 a
2019-2020 济麦44
JM44
常规条播 Drilling 14.41 a 1.15 a 30.90 a 15.14 a 812.50 a
宽幅播种 Wide range 14.31 a 1.14 a 31.46 a 14.68 a 820.83 a
泰山27
TS27
常规条播 Drilling 12.88 a 0.96 a 29.80 a 11.77 a 947.50 a
宽幅播种 Wide range 12.98 a 0.95 a 29.22 a 10.36 a 968.33 a
藁优5766
GY5766
常规条播 Drilling 13.26 a 0.94 a 29.97 a 16.51 a 789.17 a
宽幅播种 Wide range 13.32 a 0.93 a 29.57 a 18.45 a 797.00 a
洲元9369
ZY9369
常规条播 Drilling 12.92 a 0.80 a 32.23 a 5.33 a 736.67 a
宽幅播种 Wide range 12.85 a 0.81 a 32.53 a 7.12 a 719.17 a

Fig. 2

Effects of sowing pattern on the nitrogen accumulation at anthesis and maturity in strong gluten wheat Different lowercase letters mean significant difference at the 0.05 probability level. The error bar represents standard error of three replicates."

Table 5

Effects of sowing pattern on nitrogen accumulation, remobilization, and contribution rate to grain N in strong gluten wheat"

年份
Growth
season
品种
Cultivar
播种方式
Sowing pattern
籽粒氮素积累量
Grain nitrogen accumulation
(kg hm-2)
花前氮素向籽粒转运
Remobilized nitrogen from vegetation organs
at anthesis to grains
花后氮素吸收量
Nitrogen assimilation after anthesis
转运量
RA (kg hm-2)
转运率
NRE (%)
对籽粒氮素
贡献率
CPG (%)
吸收量UA
(kg hm-2)
对籽粒氮素贡献率
CPG (%)
2018-2019 济麦44
JM44
常规条播
Drilling
187.99 b 136.09 b 76.14 a 72.39 a 51.90 b 27.61 b
宽幅播种
Wide range
216.54 a 144.39 a 72.59 b 66.70 b 72.16 a 33.30 a
泰山27
TS27
常规条播
Drilling
206.92 b 162.85 b 74.26 a 78.71 a 44.07 b 21.30 b
宽幅播种
Wide range
245.02 a 178.48 a 72.69 a 72.84 b 66.55 a 27.16 a
藁优5766
GY5766
常规条播Drilling 206.27 b 166.81 a 78.31 a 80.88 a 39.45 b 19.12 b
宽幅播种
Wide range
231.93 a 174.26 a 77.08 b 75.14 b 57.67 a 24.86 a
洲元9369
ZY9369
常规条播
Drilling
209.34 b 167.46 a 74.79 a 79.98 a 41.88 b 20.02 b
宽幅播种
Wide range
235.44 a 176.15 a 73.15 b 74.84 b 59.29 a 25.17 a
年份
Growth
season
品种
Cultivar
播种方式
Sowing pattern
籽粒氮素积累量
Grain nitrogen accumulation
(kg hm-2)
花前氮素向籽粒转运
Remobilized nitrogen from vegetation organs
at anthesis to grains
花后氮素吸收量
Nitrogen assimilation after anthesis
转运量
RA (kg hm-2)
转运率
NRE (%)
对籽粒氮素
贡献率
CPG (%)
吸收量
UA
(kg hm-2)
对籽粒氮素贡献率
CPG (%)
2019-2020 济麦44
JM44
常规条播
Drilling
193.69 b 134.73 b 62.27 a 69.58 a 58.96 b 30.42 b
宽幅播种
Wide range
214.71 a 144.81 a 61.97 a 67.46 b 69.90 a 32.54 a
泰山27
TS27
常规条播
Drilling
189.86 b 122.02 b 62.38 a 64.27 a 67.84 b 35.73 b
宽幅播种
Wide range
210.50 a 130.13 a 61.20 a 61.82 b 80.37 a 38.18 a
藁优5766
GY5766
常规条播
Drilling
222.08 b 133.85 a 67.75 a 60.27 a 88.24 b 39.73 b
宽幅播种
Wide range
239.90 a 138.90 a 63.70 b 57.91 b 100.99 a 42.09 a
洲元9369
ZY9369
常规条播
Drilling
220.10 b 148.44 b 68.90 b 67.45 a 71.67 b 32.55 b
宽幅播种
Wide range
259.03 a 163.31 a 72.89 a 63.05 b 95.73 a 36.95 a
[1] Dupont F M, Altenbach S B. Molecular and biochemical impacts of environmental factors on wheat grain development and protein synthesis. J Cereal Sci, 2003, 38:133-146.
doi: 10.1016/S0733-5210(03)00030-4
[2] 王月福, 于振文, 李尚霞, 余松烈. 施氮量对小麦籽粒蛋白质组分含量及加工品质的影响. 中国农业科学, 2002, 35:1071-1078.
Wang Y F, Yu Z W, Li S X, Yu S L. Effects of nitrogen application amount on content of protein components and processing quality of wheat grain. Sci Agric Sin, 2002, 35:1071-1078 (in Chinese with English abstract).
[3] 赵俊晔, 于振文. 不同土壤肥力条件下施氮量对小麦氮肥利用和土壤硝态氮含量的影响. 生态学报, 2006, 26:815-822.
Zhao J Y, Yu Z W. Effects of nitrogen rate on nitrogen fertilizer use of winter wheat and content of soil nitrate-N under different fertility condition. Acta Ecol Sin, 2006, 26:815-822 (in Chinese with English abstract).
[4] Slafer G A, Andrade F H, Feingold S E. Triticum aestivum L.) in Argentina: relationships between nitrogen and dry matter Triticum aestivum L.) in Argentina: relationships between nitrogen and dry matter. Euphytica, 1990, 50:63-71.
doi: 10.1007/BF00023162
[5] Simmonds N W. The relation between yield and protein in cereal grain. J Sci Food Agric, 2010, 67:309-315.
doi: 10.1002/(ISSN)1097-0010
[6] Feil B. The inverse yield-protein relationship in cereals: possibilities and limitations for genetically improving the grain protein yield. Trends Agron, 1997, 1:103-119.
[7] Munier-Jolain N G, Salon C. Are the carbon costs of seed production related to the quantitative and qualitative performance? An appraisal for legumes and other crops. Plant Cell Environ, 2010, 28:1388-1395.
doi: 10.1111/pce.2005.28.issue-11
[8] Acreche M M, Slafer G A. Variation of grain nitrogen content in relation with grain yield in old and modern Spanish wheats grown under a wide range of agronomic conditions in a Mediterranean region. J Agric Sci, 2009, 147:657-667.
doi: 10.1017/S0021859609990190
[9] Bogard M, Allard V, Brancourt-Hulmel M, Heumez E, Machet J M, Jeuffroy M H, Gate P, Martre P, Gouis J L. Deviation from the grain protein concentration-grain yield negative relationship is highly correlated to post-anthesis N uptake in winter wheat. J Exp Bot, 2010, 61:4303-4312.
doi: 10.1093/jxb/erq238
[10] 李世莹, 冯伟, 王永华, 王晨阳, 郭天财. 宽幅播种带间距对冬小麦冠层特征及产量的影响. 植物生态学报, 2013, 37:758-767.
doi: 10.3724/SP.J.1258.2013.00079
Li S Y, Feng W, Wang Y H, Wang C Y, Guo T C. Effects of spacing interval of wide bed planting on canopy characteristics and yield in winter wheat. Chin J Plant Ecol, 2013, 37:758-767 (in Chinese with English abstract).
[11] 石玉华, 初金鹏, 尹立俊, 贺明荣, 邓淑珍, 张良, 孙晓乐, 田奇卓, 代兴龙. 宽幅播种提高不同播期小麦产量与氮素利用率. 农业工程学报, 2018, 34(17):127-133.
Shi Y H, Chu J P, Yin L J, He M R, Deng S Z, Zhang L, Sun X L, Tian Q Z, Dai X L. Wide-range sowing improving yield and nitrogen use efficiency of wheat sown at different dates. Trans CSAE, 2018, 34(17):127-133 (in Chinese with English abstract).
[12] 初金鹏, 朱文美, 尹立俊, 石玉华, 邓淑珍, 张良, 贺明荣, 代兴龙. 宽幅播种对冬小麦‘泰农 18’产量和氮素利用率的影响. 应用生态学报, 2018, 29:2517-2524.
Chu J P, Zhu W M, Yin L J, Shi Y H, Deng S Z, Zhang L, He M R, Dai X L. Effects of wide-range planting on the yield and nitrogen use efficiency of winter wheat cultivar Tainong 18. Chin J Appl Ecol, 2018, 29:2517-2524 (in Chinese with English abstract).
[13] 郑飞娜, 初金鹏, 张秀, 费立伟, 代兴龙, 贺明荣. 播种方式与种植密度互作对大穗型小麦品种产量和氮素利用率的调控效应. 作物学报, 2020, 46:423-431.
doi: 10.3724/SP.J.1006.2020.91046
Zheng F N, Chu J P, Zhang X, Fei L W, Dai X L, He M R. Interactive effects of sowing pattern and planting density on grain yield and nitrogen use efficiency in large spike wheat cultivar. Acta Agron Sin, 2020, 46:423-431 (in Chinese with English abstract).
[14] 朱元刚, 初金鹏, 张秀, 钤太峰, 代兴龙, 贺明荣. 不同播期冬小麦氮素出籽效率与氮素利用及转运的相关性. 应用生态学报, 2019, 30:1151-1160.
Zhu Y G, Chu J P, Zhang X, Qian T F, Dai X L, He M R. Correlation between nitrogen fruiting efficiency and nitrogen utilization and remobilization in winter wheat at different sowing dates. Chin J Appl Ecol, 2019, 30:1151-1160 (in Chinese with English abstract).
[15] 姜丽娜, 张雅雯, 朱娅林, 赵凌霄. 施氮量对不同品种小麦物质积累、转运及产量的影响. 作物杂志, 2019, (5):151-158.
Jiang L N, Zhang Y W, Zhu Y L, Zhao L X. Effects of nitrogen application on dry matter accumulation, transport and yield in different wheat varieties. Crops, 2019, (5):151-158 (in Chinese with English abstract).
[16] Zhu J, Khan K. Effects of genotype and environment on glutenin polymers and breadmaking quality. Cereal Chem, 2001, 78:125-130.
doi: 10.1094/CCHEM.2001.78.2.125
[17] Masclaux-Daubresse C, Chardon F. Arabidopsis thaliana Arabidopsis thaliana. J Exp Bot, 2011, 62:2131-2142.
doi: 10.1093/jxb/erq405 pmid: 21273332
[18] Delcour J A, Joye I J, Pareyt B, Wilderjans E, Lagrain B. Wheat gluten functionality as a quality determinant in cereal-based food products. Annu Rev Food Sci Technol, 2012, 3:469-492.
doi: 10.1146/food.2012.3.issue-1
[19] Goesaert H, Brijs K, Veraverbeke W S, Courtin C M, Gebruers K, Delcour J A. Wheat flour constituents: how they impact bread quality, and how to impact their functionality. Trends Food Sci Technol, 2005, 16:12-30.
doi: 10.1016/j.tifs.2004.02.011
[20] Weegels P L, Hamer R J, Schofield J D. Functional properties of wheat glutenin. J Cereal Sci, 1996, 23:1-17.
doi: 10.1006/jcrs.1996.0001
[21] Johansson E, Prieto-Linde M L, Jönsson J Ö. Effects of wheat cultivar and nitrogen application on storage protein composition and breadmaking quality. Cereal Chem, 2001, 78:19-25.
doi: 10.1094/CCHEM.2001.78.1.19
[22] Singh H, Macritchie F. Application of polymer science to properties of gluten. J Cereal Sci, 2001, 33:231-243.
doi: 10.1006/jcrs.2000.0360
[23] Fuertes-Mendizábal T, Aizpurua A, González-Moro M B, Estavillo J M. Improving wheat bread making quality by splitting the N fertilizer rate. Eur J Agron, 2010, 33:52-61.
doi: 10.1016/j.eja.2010.03.001
[24] Aguirrez L, Martre P, Pereyra-Irujo G, Izquierdo N, Allard V. Management and breeding strategies for the improvement of grain and oil quality. Crop Physiol, 2009, 28:387-421.
[25] Zhou B, Serret M D, Elazab A, Pie J B, Araus J L, Aranjuelo I, Sanz-Saez A. Wheat ear carbon assimilation and nitrogen remobilization contribute significantly to grain yield. J Integr Plant Biol, 2016, 58:914-926.
doi: 10.1111/jipb.12478
[1] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
[2] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
[3] WANG Yan, CHEN Zhi-Xiong, JIANG Da-Gang, ZHANG Can-Kui, ZHA Man-Rong. Effects of enhancing leaf nitrogen output on tiller growth and carbon metabolism in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 739-746.
[4] XIE Cheng-Hui, MA Hai-Zhao, XU Hong-Wei, XU Xi-Yang, RUAN Guo-Bing, GUO Zheng-Yan, NING Yong-Pei, FENG Yong-Zhong, YANG Gai-He, REN Guang-Xin. Effects of nitrogen rate on growth, grain yield, and nitrogen utilization of multiple cropping proso millet after spring-wheat in Irrigation Area of Ningxia [J]. Acta Agronomica Sinica, 2022, 48(2): 463-477.
[5] KE Jian, CHEN Ting-Ting, XU Hao-Cong, ZHU Tie-Zhong, WU Han, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Effects of different application methods of controlled-release nitrogen fertilizer on grain yield and nitrogen utilization of indica-japonica hybrid rice in pot-seedling mechanically transplanted [J]. Acta Agronomica Sinica, 2021, 47(7): 1372-1382.
[6] LIU Qiu-Yuan, ZHOU Lei, TIAN Jin-Yu, CHENG Shuang, TAO Yu, XING Zhi-Peng, LIU Guo-Dong, WEI Hai-Yan, ZHANG Hong-Cheng. Relationships among grain yield, rice quality and nitrogen uptake of inbred middle-ripe japonica rice in the middle and lower reaches of Yangtze River [J]. Acta Agronomica Sinica, 2021, 47(5): 904-914.
[7] ZHENG Ying-Xia, CHEN Du, WEI Peng-Cheng, LU Ping, YANG Jin-Yue, LUO Shang-Ke, YE Kai-Mei, SONG Bi. Effects of planting density on lodging resistance and grain yield of spring maize stalks in Guizhou province [J]. Acta Agronomica Sinica, 2021, 47(4): 738-751.
[8] JIN Yi-Rong, LIU Jin-Dong, LIU Cai-Yun, JIA De-Xin, LIU Peng, WANG Ya-Mei. Genome-wide association study of nitrogen use efficiency related traits in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 394-404.
[9] ZHU Ya-Li, WANG Chen-Guang, YANG Mei, ZHENG Xue-Hui, ZHAO Cheng-Feng, ZHANG Ren-He. Response of grain filling and dehydration characteristics of kernels located in different ear positions in the different maturity maize hybrids to plant density [J]. Acta Agronomica Sinica, 2021, 47(3): 507-519.
[10] HUANG Heng, JIANG Heng-Xin, LIU Guang-Ming, YUAN Jia-Qi, WANG Yuan, ZHAO Can, WANG Wei-Ling, HUO Zhong-Yang, XU Ke, DAI Qi-Gen, ZHANG Hong-Cheng, LI De-Jian, LIU Guo-Lin. Effects of side deep placement of nitrogen on rice yield and nitrogen use efficiency [J]. Acta Agronomica Sinica, 2021, 47(11): 2232-2249.
[11] HU Xin-Hui, GU Shu-Bo, ZHU Jun-Ke, WANG Dong. Effects of applying potassium at different growth stages on dry matter accumulation and yield of winter wheat in different soil-texture fields [J]. Acta Agronomica Sinica, 2021, 47(11): 2258-2267.
[12] HAN Zhan-Yu,GUAN Xian-Yue,ZHAO Qian,WU Chun-Yan,HUANG Fu-Deng,PAN Gang,CHENG Fang-Min. Individual and combined effects of air temperature at filling stage and nitrogen application on storage protein accumulation and its different components in rice grains [J]. Acta Agronomica Sinica, 2020, 46(7): 1087-1098.
[13] LUO Wen-He, SHI Zu-Jiao, WANG Xu-Min, LI Jun, WANG Rui. Effects of water saving and nitrogen reduction on soil nitrate nitrogen distribution, water and nitrogen use efficiencies of winter wheat [J]. Acta Agronomica Sinica, 2020, 46(6): 924-936.
[14] Lei ZHOU,Qiu-Yuan LIU,Jin-Yu TIAN,Meng-Hua ZHU,Shuang CHENG,Yang CHE,Zhi-Jie WANG,Zhi-Peng XING,Ya-Jie HU,Guo-Dong LIU,Hai-Yan WEI,Hong-Cheng ZHANG. Differences in yield and nitrogen absorption and utilization of indica-japonica hybrid rice varieties of Yongyou series [J]. Acta Agronomica Sinica, 2020, 46(5): 772-786.
[15] Zhi-Yuan YANG,Na LI,Peng MA,Tian-Rong YAN,Yan HE,Ming-Jin JIANG,Teng-Fei LYU,Yu LI,Xiang GUO,Rong HU,Chang-Chun GUO,Yong-Jian SUN,Jun MA. Effects of methodical nitrogen-water distribution management on water and nitrogen use efficiency of rice [J]. Acta Agronomica Sinica, 2020, 46(3): 408-422.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!