作物学报 ›› 2009, Vol. 35 ›› Issue (2): 309-316.doi: 10.3724/SP.J.1006.2009.00309

• 耕作栽培·生理生化 • 上一篇    下一篇



  1. 中国农业科学院作物科学研究所,北京100081
  • 收稿日期:2008-08-13 修回日期:2008-10-26 出版日期:2009-02-12 网络出版日期:2008-12-11
  • 通讯作者: 赵明
  • 基金资助:


Optimal Model for Dynamic Characteristics of Grain Weight Commonly Used in Wheat and Maize

FU Xue-Li,ZHAO Ming*,ZHOU Bao-Yuan,CUI Guo-Mei,DING Zai-Song   

  1. Crop Science Institutes,Chinese Academy of Agricultural Sciences, Beijing 100081,China
  • Received:2008-08-13 Revised:2008-10-26 Published:2009-02-12 Published online:2008-12-11
  • Contact: ZHAO Ming


为了定量描述小麦、玉米两作物粒重变化共性特征,选用3个冬小麦和4个夏玉米不同熟期型品种进行不同密度的田间试验,对其粒重(GW)动态进行测定,并对GW灌浆天数进行归一化处理得到的3个主要模型进行比较,结果表明,Logistic曲线方程y= a/(1+be–cx) 具有广泛适应性和生物学意义,具体方程式为y=1.0624/(1+52.8653e6.7609x)r=0.9916 (P<0.01)。不同作物、品种、密度处理的方程参数a值基本为1;参数b在密度间变异很小,品种间变幅较大,为45.3379~66.9306c值在品种和密度间变异均很小,在小麦和玉米间的变幅分别为6.2122~6.80257.0199~7.7325用本试验及河南焦作高产冬小麦和山东泰安高产夏玉米不同品种的GW试验资料对模型分别进行验证表明,冬小麦和夏玉米的归一化GW动态共性模型的模拟准确度(k表示),分别为0.98701.00570.99821.0131,精确度(R2表示)分别为0.98540.99180.97720.9926。说明归一化方法建立的小麦、玉米GW动态共性模型能够准确地反映两作物GW动态共性变化特点。利用该模型,仅根据品种的灌浆期和最大GW,以及参数b值的品种特点,便可还原整个灌浆期的GW动态。计算不同地点、年份及不同品种、密度处理的冬小麦、夏玉米灌浆前、中、后期的GW模拟值与测量值均比较接近,误差小于0.2797

关键词: 小麦, 玉米, 粒重动态, 共性特征, 模型筛选


Grain weight (GW) is one of important components of yield in cereal crops. Currently, there are several models on GW of cereal crops, such as wheat (Triticum aestivum L.), maize (Zea mays L.), and rice (Oryza sativa L.). However, these models are mostly applicable on a single crop.To establish a common model of GW for at least two crops with wider application under different conditions, three cultivars of winter wheat and four cultivars of summer maize were used in field experiments in four environments in 2006–2008. Each cultivar had three treatments of density. A common GW model, y= a / (1+be-cx), was developed with normalized GWand grain filling duration for the two crops. The parameters of a, b, and c were 1.0624, 52.8653, and 6.7609 (r=0.9916, P<0.01) on the basis of the experimental data, respectively. In different crops, cultivars, and densities, the GW dynamic model kept a relative stable a value, which was around 1; however, the b and c values varied in different conditions. The b value changed slightly with density, and shift from 45.3379 to 66.9306 in different cultivars; whereas, the c value had small differences among different cultivars and densities, and varied from 6.2122 to 6.8025 in winter wheat and from 7.0199 to 7.7325 in maize. The accuracy and precision of the normalized model were tested with theGWdata of winter wheat from Jiaozuo, Henan province and summer maize from Tianan, Shandong province as well as data in this study. The normalized dynamic model could make a good estimation of GW dynamics with the accuracies of 0.9870, 1.0057, and 0.9982, 1.0131, and the precision (R2) of 0.9854, 0.9918 and 0.9772, 0.9926 for winter wheat and summer maize respectively. Compared with other GWmodels established by other researches, normalized GW dynamic model could eliminate the variance of the model parameters caused by location, year, cultivar, and density. Normalized GWdynamic model can predict the increase of GW reliably and easily, if the GWmax and grain filling duration are acquired, and the characteristics of parameter b are ascertained. This model is applicable to calculate the GW of winter wheat and summer maize at early, middle, and late stages of growth under different conditions (region, years, cultivar, and density), and the error is less than 0.2797 between the measured GW and the simulated GW.

Key words: Wheat, Maize, Grain weight dynamic, Common characters, Model selection

[1]Shi X-W(时晓伟), Wang S-F(王淑芬), Wang J-Z(王继忠), Wang H(王辉), Jia Y-G(贾永国). Analysis on grain grouting characters in early maturing and high yield wheat cultivars. Acta Agric Boreali-Sin (华北农学报), 2005, 20(6): 4–7 (in Chinese with English abstract)
[2]Zhang Y-J(张亚洁), Xu D-M(许德美), Sun B(孙斌), Diao G-H(刁广华), Lin Q-S(林强森), Yang J-C(杨建昌). Effects of cultivation methods on grain-filling and chalky grains of upland and paddy rice. Sci Agric Sin (中国农业科学), 2005, 39(2): 257–264 (in Chinese with English abstract)
[3]Zheng H-J(郑洪建), Dong S-T(董树亭), Wang K-J(王空军), Hu C-H(胡昌浩), Guo Y-Q(郭玉秋), Zhang J-W(张吉旺). Studies on effect of ecological factors on maize kernel growth and corre-sponding regulative measures. J Maize Sci (玉米科学), 2001, 9(1): 69–73 (in Chinese with English abstract)
[4]Liu K-L(刘克礼), Gao J-L(高聚林), Zhang Y-P(张永平), Song R-H(宋瑞华), Yu J-G(于金刚), Xue F-C(薛凤成). Characters of grain formation and filling of spring wheat under dry framing. J Triticeae Crops (麦类作物学报), 2003, 23(4): 71–74(in Chinese with English abstract)
[5]Li S-C(李绍长), Bai P(白萍), Lü X(吕新), Liu S-Y(刘淑云), Dong S-T(董树亭). Ecological and sowing date effects on maize grain filling. Acta Agron Sin (作物学报), 2003, 29(5): 775–778 (in Chinese with English abstract)
[6]Wang J-Y(王嘉宇), Fan S-X(范淑秀), Xu Z-J(徐正进), Chen W-F(陈温福). Filling properties of grains on different positions in a panicle of rice with different panicle types. Acta Agron Sin (作物学报), 2007, 33(8): 1366–1371 (in Chinese with English abstract)
[7]Jones D B, Peterson M L, Geng S. Association between grain filling rate and duration and yield components in rice. Crop Sci, 1979, 19: 641–644
[8]Ren Z-L(任正隆), Li Y-Q(李尧权). Variety differences of filling rate and relative growth rate of wheat grain and dry matter accumulation after anthesis in wheat. Sci Agric Sin (中国农业科学), 1981, 14(6): 12–20 (in Chinese with English abstract)
[9]Zhang X-L(张晓龙). Study on the grain filling of wheat. Acta Agron Sin (作物学报), 1982, 8(2): 87–93 (in Chinese with Eng-lish abstract)
[10]Lin W-X(林文雄), Wu Z-Q(吴志强), Liang Y-Y(梁义元). Im-pact of climatic condition on the grain filling properties of hybrid rice. Chin J Agrometeorol (中国农业气象), 1992, 13(2): 4–8 (in Chinese with English abstract)
[11]Xiao S-Z(肖淑招), Zhang G-Z(张桂宗), Meng X-Y(孟宪钺). Study on simulation model of grain filling rate in winter wheat. Chi J Agrometeorol (农业气象), 1986, 7(4): 9–13 (in Chinese with English abstract)
[12]Liu Z-Y(刘章勇), Mei N(梅楠), Yu M-J(郁明谏). Study on simulation model of process of grain weight growth in winter wheat. Hubei Agric Sci (湖北农业科学), 1997, (3): 14–18 (in Chinese with English abstract)
[13]Zhang L-D(张录达), Jiang Z-H(蒋钟怀). Study on the nonlinear model on the relationship between the corn grain filling and the cumulated temperature. J China Agric Univ (中国农业大学学 报), 1998, 3(1): 45–49 (in Chinese with English abstract)
[14]Zhu Q-S(朱庆森), Cao X-Z(曹显祖), Luo Y-Q(骆亦其). Growth analysis on the process of grain filling in rice. Acta Agron Sin (作物学报), 1988, 14(3): 182–193(in Chinese with English abstract)
[15]Yang J, Zhang J, Wang Z, Zhu Q, Wang W. Hormoneal changes in the grains of rice subjected to water stress during grain filling. Plant Physiol, 2001, 127: 315–323
[16]Gong Y-H(龚月桦), Liu Y-Z(刘迎洲), Gao J-F(高俊凤). Growth analysis on the process of grain filling in hybrid wheat 901 and its parents. Sci Agric Sin (中国农业科学), 2004, 37(9): 1288–1292 (in Chinese with English abstract)
[17]Xue X(薛香), Wu Y-E(吴玉娥), Chen R-J(陈荣江), Han Z-J(韩占江), Gao Q-L(郜庆炉). Comparison of different mathematical equations for simulating the grain filling process of wheat. J Triticeae Crops (麦类作物学报), 2006, 26(6): 169–171 (in Chi-nese with English abstract)
[18]Zhang B(张宾), Zhao M(赵明), Dong Z-Q(董志强), Li J-G(李建国), Chen C-Y(陈传永), Sun R(孙锐). Establishment and test of LAI dynamic simulation model for high yield population. Acta Agron Sin (作物学报), 2007, 33(4): 612–619 (in Chinese with English abstract)
[19]Ma C(马冲), Zou R-F(邹仁峰), Su B(苏波), Zhang J(张健), Chen J-L(陈举林). Studies on grain filling characteristics of hy-brid corn with different growth durations. Crop Res (作物研究), 2000, 4(6): 17–19 (in Chinese with English abstract)
[20]Zhang X-D(张旭东), Cai H-J(蔡焕杰), Fu Y-J(付玉娟), Wang J(王健). Study on leaf area index of summer maize in loess areas. Agric Res Arid Areas (干旱地区农业研究), 2006, 24(2): 25–29 (in Chinese with English abstract)
[21]Hu J(胡健), Yang L-X(杨连新), Zhou J(周娟), Wang Y-L(王余龙), Zhu J-G(朱建国). Effect of free-air CO2 enrichment (FACE) on grain filling dynamics of rice. Sci Agric Sin (中国农业科学), 2007, 40(11): 2443–2451 (in Chinese with English abstract)
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[4] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[8] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[9] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[10] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[11] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[12] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[13] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[14] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[15] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
Full text



No Suggested Reading articles found!