欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (12): 2187-2196.doi: 10.3724/SP.J.1006.2009.02187

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

不同供体及不同回交次数对玉米自交系R08的改良效应

乔善宝,王玉花,杨克诚*,荣廷昭,潘光堂,高世斌*   

  1. 四川农业大学玉米研究所/教育部作物基因资源与遗传改良重点实验室,四川雅安 625014
  • 收稿日期:2009-04-27 修回日期:2009-08-22 出版日期:2009-12-10 网络出版日期:2009-10-13
  • 通讯作者: 杨克诚,Tel:0835-2882465;高世斌,E-mail:shibingao@gmail.com
  • 基金资助:

    本研究由国家“十一五”科技攻关计划子课题(2006BAD13B03),教育部长江学者和创新团队发展计划(IRT0453),四川省玉米育种攻关项目资助。

Effects Contributed by Different Donor Parents and Backcross Times on R08 Improvement

WANG Yu-Hua,QIAO Shan-Bao,YANG Ke-Cheng*,RONG Ting-Zhao,PAN Guang-Tang,GAO Shi-Bin*   

  1. Maize Research Institute,Sichuan Agricultural University/Key Laboratory of Crop Genetic Resources and Improvement,Ministry of Education,Ya'an 625014,China
  • Received:2009-04-27 Revised:2009-08-22 Published:2009-12-10 Published online:2009-10-13
  • Contact: YANG Ke-Chen,Tel:0835-2882465;GAO Shi-Bin,E-mail:shibingao@gmail.com

摘要:

R08为轮回亲本,18个优良自交系为供体亲本,不同回交和自交次数,选育出遗传背景与R08相近、但相互之间又存在一定差异的BC1F3BC2F218R08改良系。通过抗病性鉴定、配合力及SSR分子标记分析,探讨不同供体及不同回交次数对R08的改良效果。结果表明,36个改良系中,29个抗或高抗大斑病,大部分改良系的多数产量性状一般配合力(GCA)R08相比并无下降或有所提高;相同供体不同回交次数选系的比较显示,对大斑病抗性的改良,回交1次自交2(BC1F3)优于回交2次自交1(BC2F2),且改良后代选系多数产量性状GCA大体相当;相同回交次数不同供体选系的比较表明,供体对回交后代的影响较大,供体不同回交后代选系大斑病抗性及多数产量性状GCA存在较大的差异;SSR分子标记研究结果在一定程度上揭示相同供体不同回交次数所创造的遗传变异无明显差异,相同回交次数不同供体选系在分子水平上存在较大差异;供体昌7-2和川321对改良R08的大斑病抗性和产量性状GCA作用较大,属优良供体亲本;w4-1w10-1属回交改良优良选系。因此,利用回交法改良玉米自交系,在选准供体亲本的基础上,回交1次后,在自交过程中加强目标性状的鉴定选择及配合力测定,可提高回交改良的育种效率。

关键词: 玉米, 供体, 回交法, 出苗率, 抗病性, 配合力, SSR标记

Abstract:

In this study, we usedR08 as the recurrent parent and 18 excellentinbreeding lines as the donor parents to improve R08 line through backcross and self-cross. A total of 18 BC1F3-derived lines and 18 BC2F2-derived lines with relatively diverse genetic background were obtained. Improving effects contributed by different donor parents and backcross times on R08 were analyzed by evaluation field trials, combining ability and SSR molecular markers of R08 improved lines. The results showed that 29 lines out of 36 BC-derived lines were resistant or high-resistant to northern leaf blight. General combining ability (GCA)of most yield traits in the majority of improved lines showed no decrease or a little increase compared with that of R08. BC1F3 (backcross once, self-cross twice) wasbetter than BC2F2 (backcross twice, self-cross once) in the improvement of disease resistance to northern leaf blightcompared with the lines which had same donor parents and different times of backcross, while the GCA of most yield traits in majority of the lines selected from the improved offspring was roughly the same. The results of SSR markers analysis showed that the genetic variation in the lines had no significant difference. On the contrary, there was a larger difference in disease resistance to northern leaf blight, GCA of the majority of yield traits and the results of SSR markersanalysis in the lines selected from different donor and same times of backcross. Donor parents Chang 7-2 and Chuan 321 played a larger role in improving R08’s disease resistance to northern leaf blight and most of yield traits’ GCA. Therefore, they are excellent donor parents. As a result, w4-1 and w10-1 are selected as elite lines of backcross-improving. Consequently, during the utilization of backcross in improving maize inbred lines, we could backcross once on the basis of selecting the right donor parents, and strengthen the identification and selection of target traits and the determination of GCA in self-cross process to improve the breeding efficiency of backcross improvement.

Key words: Corn, Donor parent, Backcross breeding, Combining ability, SSR


[1] Rong T-Z(荣廷昭), Li W-C(李晚忱), Pan G-T(潘光堂). Suggestion on development of science and technology in maize genetics and breeding at the beginning of 21st century. J Maize Sci (玉米科学), 2003, 11: 42-53 (in Chinese with English abstract)

[2] Wu J-F (吴景锋). A review on the germplasm basis of major maize hybrids in China. In: Li J-X(李竞雄) ed. Advance of Maize Breeding (玉米育种研究进展). Beijing: Science Press, 1992. pp 61-69 (in Chinese)

[3] Darrah L L, Zuber M S. The United States farm corn germplasm base and commercial breeding strategies. Crop Sci, 1986, 26: 1109-1113

[4] Pan J-J(潘家驹). Crop Breeding (作物育种学总论). Beijing: China Agriculture Press, 1994. pp 68-74, 91, 161 (in Chinese )

[5] Hu Y-J(胡延吉). Plant Breeding (植物育种学). Beijing: Higher Education Press, 2003, pp 21-23 (in Chinese)

[6] People’s Republic of China Agriculture Industry Standard (中华人民共和国农业行业标准). NY/T 1248.1-2006 (in Chinese)

[7] Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014-8018

[8] Chen F-B(陈发波), Yang K-C(杨克诚), Rong T-Z(荣廷昭), Pan G-T(潘光堂). Analysis of genetic diversity of maize hybrids in the regional tests of Sichuan and Southwest China. Acta Agron Sin (作物学报), 2007, 33(6): 991-998 (in Chinese with English abstract)

[9] Rong T-Z(荣廷昭), Li W-C(李晚忱). Field Experimentation and Statistical Methods (田间试验与统计方法). Chengdu: Sichuan University Press, 2001:105 (in Chinese)

[10] Yang Z-X(杨竹轩), Li X-J(李小军). Several problems on data-processing of pesticide experiment in field. Pesticide Sci Admin (农药科学与管理), 2003, 24(9): 26-28 (in Chinese with English abstract)

[11] Rong T-Z(荣廷昭), Pan G-T(潘光堂), Huang Y-B(黄玉碧). Quantitative Genetics (数量遗传学). Beijing: China Science and Technology Press, 2003. pp 211-243 (in Chinese)

[12] Nei M, Li W H. Mathemacal model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA, 1979, 76: 5256-5273

[13] Liu J-L(刘纪麟). Maize Breeding (玉米育种学), 2nd edn. Beijing: China Agriculture Press, 2002. pp 177-178 (in Chinese)

[14] Paterson A H. Molecular Dissection of Complex Traits. Boca Raton: CRC Press, 1997

[15] Hughes G R, Hooker A L. Gene action conditioning resistance to northern leaf blight in maize. Crop Sci, 1997, 11: 180-184

[16] Hooker A L. A new type of resistance in corn Helminthosporium turccicum. Plant Dis Reptr, 1961, 45: 780-781

[17] Hooker A L. A second major gene locus in corn for chlorotic lesion resistance to Helminthosporium turcicum. Crop Sci, 1977, 17: 132-135

[18] Li J-S (李建生), Liu J-L (刘纪麟). Study on the interaction of monogenic and polygenic resistance to Helminthosprium turcicum in maize. In: Li J-X (李竞雄). Advance of Maize Breeding (玉米育种研究进展). Beijing: Science Press, 1992. pp 94-100 (in Chinese)

[19] Yang J-L(杨继良), Wang B(王斌). The research advancement on genetics of resistance to Exserohilum turcicum in maize. Hereditas (遗传), 2002, 24(4): 501-506 (in Chinese with English abstract)

[20] Guo H-A(郭海鳌). Review on Selection Process of Serieshybrid withSizaohao. J Maize Sci (玉米科学), 2002, 10(4): 8-9 (in Chinese)

[21] Li Y-L(李玉玲), Wang Y-Z(王延召). Effect of backcrossing on the popping characteristics of normal corn × popcorn crosses. J Henan Agric Univ (河南农业大学学报), 2007, 6(3): 247-250 (in Chinese with English abstract)

[22] Rong T-Z(荣廷昭), Li W-C(李晚忱), Yang K-C(杨克诚). Maize Breeding in Southwest Ecological Zones (西南生态区玉米育种). Beijing: China Agriculture Press, 2003. pp 114-115 (in Chinese)
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!