欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (12): 2180-2186.doi: 10.3724/SP.J.1006.2009.02180

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

鹰嘴豆锌指蛋白基因ZF1的克隆及表达分析

陈晨1,彭辉1,高文瑞1,石庆华2,张桦2,张巨松2,李建贵2,麻浩1,*   

  1. 1南京农业大学作物遗传与种质创新国家重点实验室/南京农业大学大豆研究所,江苏南京210095;2新疆农业大学农业生物技术研究中心重点实验室,新疆乌鲁木齐830052
  • 收稿日期:2009-02-26 修回日期:2009-07-24 出版日期:2009-12-10 网络出版日期:2009-10-13
  • 通讯作者: 麻浩, E-mail: Lq-ncsi@njau.edu.cn; Tel: 025-84395324
  • 基金资助:

    本研究由国家自然科学基金项目(30860152),国家“十一五”科技支撑计划项目(2007BAC15B06,2006BAD09A04,2006BAD09A08),教育部高等学校学科创新引智计划,“全国科技支疆行动”合作项目(200991254)资助。

Cloning and Expression of Zinc Finger Protein Genetic ZF1 in Chickpea(Cicerone arietinum L.)

CHEN Chen1,PENG Hui1,GAO Wen-Rui1,SHI Qing-Hua2,ZHANG Hua2,ZHANG Ju-Song2,LI Jiang-Gui2,MA Hao1*   

  1. 1State Key Laboratory of Crop Genetics and Germplasm Enhancement/National Center for Soybean Improvement,Nanjing Agricultural University,Nanjing 210095,China;2Key Laboratory of Agricultural Biotechnolgy,Xinjing Agricultural University,Urumqi 830052,China
  • Received:2009-02-26 Revised:2009-07-24 Published:2009-12-10 Published online:2009-10-13
  • Contact: MA Hao,E-mail:Lq-ncsi@njau.edu.cn;Tel:025-84395324

摘要:

利用一段从PEG胁迫的鹰嘴豆幼苗叶片所构建的cDNA文库中得到的EST序列,通过3¢RACE方法克隆到一个鹰嘴豆C2H2型锌指蛋白基因ZF1,该基因不含内含子,编码一条244个氨基酸残基的多肽,含有两个典型的Cys2/His2锌指结构。其氨基酸序列含有一个可能的核定位型号,农杆菌介导的洋葱表皮细胞GFP瞬时表达实验表明,ZF1蛋白位于细胞核内。半定量RT-PCR分析表明,ZF1在鹰嘴豆的根、茎、叶、花、幼荚和幼胚中均有表达,在茎和叶中表达较弱,为组成型转录因子。半定量RT-PCR和实时荧光定量PCR检测结果显示,ZF1不但受高温及干旱诱导,而且还受6-苄基腺嘌呤(6-BA)、脱落酸(ABA)、乙烯利(Et)、赤霉素(GA3)、吲哚-3-乙酸(IAA)茉莉酸甲酯(MeJA)、水杨酸(SA)和氧胁迫诱导。这些结果表明,ZF1基因可能作为一个核调控因子参与植物的生长代谢以及多种生物与非生物胁迫的应答。

关键词: 鹰嘴豆, 锌指蛋白, 基因克隆, 胁迫, 表达分析

Abstract:

Regulation of gene expression at the level of transcription controls many crucial biological processes including growth and development, stress response, signal transduction and disease resistance. A number of factors, such as C2H2 zinc finger protein, are required and factors play an important role in the transcription. Chickpea (Cicer arietinum L.) is the third important legume crop gown mainly in the arid and semi-arid regions in the world. Due to its taxonomic proximity with the model legume genome of Medicago truncatula and its ability to grow in soil with relatively low water content, chickpea is being investigated as a model legume crop for drought tolerance studies. In our laboratory, two cDNA libraries from the PEG-treated and non-treated seedling leaves of chickpea XJ209 were constructed and many genes were found to express differentially and involved in diverse biological processes, such as metabolism, transcription, signal transduction, protein synthesis and others. According to an EST in the cDNA libraries, a zinc finger protein gene ZF1 was cloned by RT-PCR and rapid amplification of cDNA ends (RACE). ZF1 did not include any intron, encoding a 26.33 kD protein with 244 amino acids, containing two typical C2H2 zinc finger domains. The deduced protein sequence had a potential nuclear localization signal (NLS). Meanwhile, transient expression of the ZF1-GFP protein in onion epidermal cells showed that ZF1 protein was localized in cell nuclei. Semi-quantitative RT-PCR analysis showed that ZF1 expressed in root, stem, leaf, flower, immature pod, and embryo of chickpea with different expression patterns. The expression of ZF1 investigated by semi-quantitative PCR had no obvious changes under stresses of cold, salt and wounding, while was increased under the treatments of heat and drought, as well as N-6-benzyl-adenine (6-BA), abscisic acid (ABA), ethephon (Et), gibberellin (GA3), indole-3-acetic acid (IAA), methyl jasmonate (MeJA), salicylic acid (SA), and H2O2. These results from semi-quantitative PCR in several treatments were further confirmed to be mainly in accord with those from real-time quantification PCR. Our results suggest that ZF1 may play multiple roles in abiotic and biotic resistance pathways, as well as in plant growth.

Key words: Chickpea, Zinc finger protein, Gene cloning, Stress, Expression analysis


[1] Hideki S, Takashi A, Tetsuo M, Masaki I. Expression of a subset of the Arabidopsis Cys2/His2-type zinc-finger protein gene family under water stress. Gene, 2000, 248: 23-32

[2] Sakai H, Medrano L J, Meyerowitz E M. Role of SUPERMAN in maintain Arabdopsis floral whorl boundaries. Nature, 1995, 378: 199-203

[3] Sakamoto A, Minami M, Huh G H, Iwabuchi M. The putative zinc-finger protein WZF1 interacts with a cis-acting element of wheat histone genes. Eur J Biochem, 1993, 217: 1049-1056

[4] Lippuner V, Cyert S, Gasser S. Two classes of plant cDNA clones differentially complement yeast calcineurin mutants and increase salt tolerance of wild-type yeast. J Biol Chem, 1996, 271: 12859-12866

[5] Kim J C, Lee S H, Cheong Y H, Yoo C M, Lee S I, Chun H J, Yun D J, Hong J C, Lee S Y, Lim C O, Cho M J. A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant J, 2001, 5: 247-259

[6] Huang J(黄骥), Wang J-F(王建飞), Zhang H-S(张红生). Structure and function of plant C2H2 zinc finger protein. Hereditas (遗传), 2004, 26(3): 414-418 (in Chinese with English abstract)

[7] Sakamoto H, Araki T, Meshi T, Iwabuchi M. Expression of a subset of the Arabidopsis Cys(2)/His(2)-type zinc-finger protein gene family under water stress. Gene, 2000, 248: 23-32

[8] Kobayashi A, Sakmoto A, Kubo K, Rybka Z, KannoY, Takatsuji H. Seven zinc-finger transcription factors are expressed sequentially during the development of anthers in Petunia. Plant J, 1998, 13: 571-576

[9] Takatsuji H, Nakamura N, Katsumoto Y. A new family of zinc finger proteins in petunia: Structure, DNA sequence recognition, and floral organ-specific expression. Plant Cell, 1994, 6: 947-958

[10] Yang Y-W(杨郁文), Ni W-C(倪万潮), Zhang B-L(张保龙), Shen X-L(沈新莲), Zhang X-G(张香桂), Xu Y-J(徐英俊), Yao S(姚姝). Molecular cloning and expression analysis of a SUPERMAN like zinc finger protein gene in upland cotton. Hereditas (遗传), 2006, 28(4): 443-448 (in Chinese with English abstract)

[11] Sugano S, Kaminaka H, Rybka Z, Catala R, Salinas J, Matsui K, Ohme-Takagi M, Takatsuji H. Stress-responsive zinc finger gene ZPT2-3 plays a role in drought tolerance in petunia. Plant J, 2003, 36: 830-841

[12] Mukhopadhyay A, Vij S, Tyagi A K. Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco.Proc Natl Acad Sci USA, 2004, 101: 6309-6314

[13] McKersie B D, Leshem Y Y. Stress and Stress Coping in Cultivated Plants. Dordrecht: Kluwer Academic Publishers, 1999. pp 148-179

[14] Gao W R, Wang X S, Liu Q Y, Peng H, Chen C, Li J G, Zhang J S, Hu S N, Ma H. Comparative analysis of ESTs in response to drought stress in chickpea (C. arietinum L.). Biochem Biophys Res Commun, 2008, 376: 578-583

[15] Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Shinozaki K Y. Arabidopsis Cys2/His2-Type zinc-Finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol, 2004, 136: 2734-2746

[16] Frugier F, Poirier S, Satiat-Jeunemaître B, Kondorosi A, Crespi M. A Krüppel-like zinc finger protein is involved in nitrogen-fixing root nodule organogenesis. Genes & Dev, 2000, 14: 475-482

[17] Xu Y, Ma Q H. Medicago truncatula Mt-ZFP1 encoding a root enhanced zinc finger protein is regulated by cytokinin, abscisic acid and jasmonate, but not cold. DNA Sequence, 2004, 15: 104-109

[18] Kim S H, Hong J K, Lee C L, Sohn K H, Jung H W, Hwang B K. CAZFP1, Cys2/his2-type zinc-finger transcription factor gene functions as a pathogen-induced early-defense gene in Capsicum annuum. Plant Mol Biol, 2004, 55: 883-904

[19] Takatsuji H, Nakamura N, Katsumoto Y.A new family of zinc finger proteins in petunia: structure, DNA sequence recognition, and floral organ-specific expression. Plant Cell, 1994, 6: 947-958

[20] Uehara Y, Takahashi Y, Berberich T, Miyazaki A, Takahashi H, Matsui K, Ohme-Takagi M, Saitoh H, Terauchi R, Kusano T. Tobacco ZFT1, a transcriptional repressor with a Cys2/His2 type zinc finger motif that functions in spermine-signaling pathway. Plant Mol Biol, 2005, 59: 435-448

[21] Kalderon D, Roberts B L, Richardson W D, Smith A E. A short amino acid sequence able to specify nuclear location. Cell, 1984, 39: 499-509

[22] Rojo E, Solano R, Sanchez-Serrano J J. Interactions between signaling compounds involved in plant defense. J Plant Growth Regul, 2003, 22: 82-98

[23] Glazebrook J. Genes controlling expression of defense responses in Arabidopsis. Curr Opin Plant Biol, 2001, 4: 301-308

[24] Mengiste T, Chen X, Salmeron J, Dietrich R. The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell, 2003, 15: 2551-2565
Kobayashi A, Sakmoto A, Kubo K, Rybka Z, Kanno Y, Takatsuji H. Seven zinc-finger transcription factors are expressed sequentially during the development of anthers in petunia. Plant J, 1998, 13: 571-576
[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[5] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[6] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[7] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[8] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[9] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[10] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[11] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[12] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[13] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[14] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[15] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!