欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (12): 2218-2224.doi: 10.3724/SP.J.1006.2009.02218

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘薯IbNPR1全长cDNA序列的分离与表达特性分析

陈观水1,周以飞2,林生1,张铮1,潘大仁1,*   

  1. 1福建农林大学生命科学学院,福建福州350002;2福建农林大学作物科学学院,福建福州350002
  • 收稿日期:2008-12-31 修回日期:2009-06-25 出版日期:2009-12-10 网络出版日期:2009-09-10
  • 通讯作者: PAN Da-Ren; E-mail: pandaren@yahoo.com.cn; Tel: +86 59183798876

Isolation and Characterization of IbNPR1 Gene from Sweet Potato(Ipomoea batatas

CHEN Guan-Shui1,ZHOU Yi-Fei2,LIN Sheng1,ZHANG Zheng1,PAN Da-Ren1,*   

  1. 1College of Life Science,Fujian Agriculture and Forestry University,Fuzhou 35002,China,College of Crop Science,Fujian Agriculture and Forestry University,Fuzhou 350002,China
  • Received:2008-12-31 Revised:2009-06-25 Published:2009-12-10 Published online:2009-09-10
  • Contact: PAN Da-Ren; E-mail: pandaren@yahoo.com.cn; Tel: +86 59183798876
  • Supported by:

    This study was supported by Fujian Province Natural Science Foundation (2006J0059) and Youth Foundation of Fujian Agriculture and Forestry University(08B12)

摘要:

在植物系统获得性抗性(SAR)中,NPR1蛋白是水杨酸介导的基因表达中关键调控因子。本研究以青农2号为试验材料,利用同源序列法和RACE技术分离甘薯SAR 途径的主要抗病信号元件NPR1 (none expresser of PR gene)的全长cDNA序列。序列分析表明,IbNPR1基因全长2 353 bp,包含一个编码586个氨基酸残基的开放阅读框,包含有类似拟南芥NPR1蛋白中的BTB/POZ和锚蛋白重复氨基酸序列结构域。聚类分析显示IbNPR1与来源于番茄的NPR1基因关系最近。Southern杂交及半定量RT-PCR分析表明,甘薯NPR1基因属于低拷贝基因家族,表达模式为组成型表达,并且SA能提高其表达水平。由该结果推测,IbNPR1可能在甘薯抵御病原物的侵染中起重要的作用。

关键词: 甘薯, ibnpr1基因, 抗病, cDNA末端快速扩增技术

Abstract:

NPR1 (non-expressor of pathogenesis-related genes 1) protein is a key regulator of salicylic acid (SA)-mediated gene epression in systemic acquired resistance (SAR). By using homologous cloning and RACE (rapid amplification of cDNA ends) techniques, a full-length cDNA of IbNPR1 (Ipomoea batatas non-expressor of pathogenesis-related genes 1) was isolated from sweet potato var. Qingnong 2. The full length cDNA was 2 353 bp, including an ORF (open reading frame) putatively encoding a polypeptide of 586 amino acids residues with a predicted molecular mass of 64.851 kD. The deduced amino acid sequence shared structural features with known NPR1 (-like) proteins: ankyrin repeat and BTB/POZ. Furthermore, phylogenetic analysis showed IbNPR1 had the closest association with LeNPR1 from Lycopersicon esculentum. Southern-blot analysis revealed that the IbNPR1 belonged to low-copy gene family in sweet potato. Semi-quantitative RT-PCR analysis indicated that IbNPR1 was constitutively expressed in roots, stems and leaves. In addition, IbNPR1 could be induced by salicylic acid. The results suggest that IbNPR1 plays an important role in the response to pathogen infections in sweet potato.

Key words: Ipomoea batatas, IbNPR1 gene, Disease resistance, RACE

[1] Mou Z, Fan W, Dong X. Inducers of plant systemic acquired resistance regulator NPR1 function through redox changes. Cell 2003, 113: 935-944

[2] Johnson C, Boden E, Arias J. Salicylic acid and NPR1 induce the recruitment of trans-activating TGA factors to a defense gene promoter in Arabidopsis. Plant Cell, 2003, 15: 1846-1858

[3] Spoel S H, Koornnef A, Claessens S M C, Korzelius J P, Van Pelt J A, Mueller M J, Buchala A J, Metraus J P, Brown R, Kazan K, Van Loon L C, Dong X, Pieterse C M J. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell, 2003, 15:760-770

[4] Uquillas C, Letelier I, Blanco F, Jordana X, Holuigue L. NPR1-independent activation of immediate early salicylic acid-responsive genes in Arabidopsis. Mol Plant Microbe Interact, 2004, 17: 34-42

[5] Zhang H Z(张红志), Cai X Z(蔡新忠). Nonexpressor of pathogenesis-related genes 1 (NPR1): A key node of plant disease resistance signalling network. Chin J Biotechnol (生物工程学报), 2005, 21(4): 511-515 (in Chinese with English abstract)

[6] Cao H, Glazebrook J, Clarke J D, Volko S, Dong X. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell, 1997, 88: 57-63

[7] Dong X. NPR1, all things considered. Curr Opin Plant Biol, 2004, 7: 547-552

[8] Nandi A, Kachroo P, Fukushige H, Hildebrand D F, Klessig D F, Shah J. Ethylene and jasmonic acid signaling affect the NPR1-independent expression of defense genes without impacting resistance to Pseudomonas syringae and Peronospora parasitica in the Arabidopsis ssi1 mutant. Mol Plant Microbe Interact, 2003, 16: 588-599

[9] Liu G, Holub E B, Alonso J M, Ecker J R, Fobert P R. An Arabidopsis NPR1-like gene, NPR4, is required for disease resistance. Plant J, 2005, 41: 304-318

[10] Liu Y, Schiff M, Marathe R, Dinesh-Kumar S P. Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J, 2002, 30: 415-429

[11] Fitzgerald H A, Chern M S, Navarre R, Ronald P C. Overexpression of (At) NPR1 in rice leads to a BTH- and environment-induced lesion-mimic/cell death phenotype. Mol Plant Microbe Interact, 2004, 17: 140-151

[12] Lin W C, Lu C F, Wu J W, Cheng M L, Lin Y M, Yang N S, Black L, Green S K, Wang J F, Cheng C P. Transgenic tomato plants expressing the Arabidopsis NPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases. Transgenic Res, 2004, 13: 567-581

[13] Chern M, Fitzgerald H A, Canlas P E, Navarre D A, Ronald P C. Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol Plant Microbe Interact, 2005, 18: 511-520

[14] Wang X J(王旭静), Dou D L(窦道龙), Wang Z X(王志兴), Jia S R(贾士荣). Cloning full-length cDNA of GbNPR1 gene from Gossypium barbadense and its expression in transgenic tobacco. Sci Agric Sin (中国农业科学), 2006, 39(5): 886-894 (in Chinese with English abstract)

[15] Yuan Y, Zhong S, Li Q, Zhu Z, Lou Y, Wang L, Wang J, Wang M, Li Q, Yang D, He Z. Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnol J, 2007, 5: 313-324

[16] Kinkema M, Fan W, Dong X. Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell, 2000, 12: 2339-2350

[17] Pieterse C M, Van Loon L C. NPR1: The spider in the web of induced resistance signaling pathways. Curr Opin Plant Biol, 2004, 7: 456-464

[18] Rochon A, Boyle P, Wignes T, Fobert P R, Després C. The coactivator function of Arabidopsis NPR1 requires the core of its BTB/POZ domain and the oxidation of C-terminal cysteines. Plant Cell, 2006, 18: 3670-3685

[19] Després C, Chubak C, Rochon A, Clark R, Bethune T, Desveaux D, Fobert P R. The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell, 2003, 15: 2181-2191

[20] Food and Agriculture Organization. Production Year Book 2002, Vol. 54. Rome: Food and Agriculture Organization of the United Nations, 2002

[21] Guo J P(郭金平), Pan D R(潘大仁). PCR detection of nematode resistance in sweet potato. Acta Agron Sin (作物学报), 2002, 28: 167-169 (in Chinese with English abstract)

[22] Meura G, Budathab M, Guptab A D, Prakashc S, Kirti P B. Differential induction of NPR1 during defense responses in Brassica juncea. Physiol Mol Plant Pathol, 2006, 68: 128-137

[23] Zhang Y, Wang X, Cheng C, Gao Q, Liu J, Guo X. Molecular cloning and characterization of GhNPR1, a gene implicated in pathogen responses from cotton (Gossypium hirsutum L.). Biosci Rep, 2008, 28: 7-14

[24] Tang Y M(唐益苗), Zhang Z Y(张增艳), Xin Z Y(辛志勇). Isolation and characterization of NPR1 homolog gene TiNH1 in Thinopyrum intermedium. Sci Agric Sin (中国农业科学), 2007, 40(6): 1101-1107 (in Chinese with English abstract)

[25] Weigel R R, Bäuscher C, Pfitzner A J, Pfitzner U M. NIMIN-1, NIMIN-2 and NIMIN-3, members of a novel family of proteins from Arabidopsis that interact with NPR1/NIM1, a key regulator of systemic acquired resistance in plants. Plant Mol Biol, 2001, 46: 143-160

[26] Blanco F, Garretón V, Frey N, Dominguez C, Pérez-Acle T, Van der Straeten D, Jordana X, Holuigue L. Identification of NPR1-dependent and independent genes early induced by salicylic acid treatment in Arabidopsis. Plant Mol Biol, 2005, 59: 927-944
[1] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[2] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[3] 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528.
[4] 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137.
[5] 张思梦, 倪文荣, 吕尊富, 林燕, 林力卓, 钟子毓, 崔鹏, 陆国权. 影响甘薯收获期软腐病发生的指标筛选[J]. 作物学报, 2021, 47(8): 1450-1459.
[6] 傅华英, 张婷, 彭文静, 段瑶瑶, 许哲昕, 林艺华, 高三基. 甘蔗新品种(系)苗期白条病人工接种抗性鉴定与评价[J]. 作物学报, 2021, 47(8): 1531-1539.
[7] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
[8] 李倩, Nadil Shah, 周元委, 侯照科, 龚建芳, 刘珏, 尚政伟, 张磊, 战宗祥, 常海滨, 傅廷栋, 朴钟云, 张椿雨. 抗根肿病甘蓝型油菜新品种华油杂62R的选育[J]. 作物学报, 2021, 47(2): 210-223.
[9] 张雪翠, 孙素丽, 卢为国, 李海朝, 贾岩岩, 段灿星, 朱振东. 河南大豆新品系抗大豆疫霉根腐病基因鉴定[J]. 作物学报, 2021, 47(2): 275-284.
[10] 王翠娟, 柴沙沙, 史春余, 朱红, 谭中鹏, 季杰, 任国博. 铵态氮素促进甘薯块根形成的解剖特征及其IbEXP1基因的表达[J]. 作物学报, 2021, 47(2): 305-319.
[11] 张欢, 罗怀勇, 李威涛, 郭建斌, 陈伟刚, 周小静, 黄莉, 刘念, 晏立英, 雷永, 廖伯寿, 姜慧芳. 花生全基因组抗病基因鉴定及其对青枯菌侵染的响应分析[J]. 作物学报, 2021, 47(12): 2314-2323.
[12] 吕国锋, 别同德, 王慧, 赵仁慧, 范金平, 张伯桥, 吴素兰, 王玲, 汪尊杰, 高德荣. 长江下游麦区新育成品种(系) 3种主要病害的抗性鉴定及抗病基因/ QTL的分子检测[J]. 作物学报, 2021, 47(12): 2335-2347.
[13] 马猛, 闫会, 高闰飞, 后猛, 唐维, 王欣, 张允刚, 李强. 紫甘薯SSR标记遗传图谱构建与重要农艺性状QTL定位[J]. 作物学报, 2021, 47(11): 2147-2162.
[14] 赵旭阳, 姚方杰, 龙黎, 王昱琦, 康厚扬, 蒋云峰, 李伟, 邓梅, 李豪, 陈国跃. 青藏春冬麦区93份小麦地方种质条锈病抗性评价及抗病基因分子鉴定[J]. 作物学报, 2021, 47(10): 2053-2063.
[15] 黄小芳,毕楚韵,石媛媛,胡韵卓,周丽香,梁才晓,黄碧芳,许明,林世强,陈选阳. 甘薯基因组NBS-LRR类抗病家族基因挖掘与分析[J]. 作物学报, 2020, 46(8): 1195-1207.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!