作物学报 ›› 2010, Vol. 36 ›› Issue (1): 147-153.doi: 10.3724/SP.J.1006.2010.00147
陈吉宝1,2,赵丽英2,毛新国1,王述民1,*,景蕊莲1,*
CHEN Ji-Bao1,2,ZHAO Li-Ying2,MAO Xin-Guo1,WANG Shu-Min1,*,JING Rui-Lian1
摘要:
为探索普通菜豆脯氨酸合成酶基因P5CS1在植物渗透胁迫中的作用,本研究应用农杆菌介导法,将PvP5CS1基因转入拟南芥,获得6株阳性转基因株系;通过检测转基因植株与野生型植株在干旱和盐胁迫下种子发芽率,幼苗脯氨酸含量、株系电导率、相对根长和成株死亡率,分析了PvP5CS1基因的表达对改善拟南芥抗渗透胁迫的效应。结果表明,在150 mmol L-1 NaCl和150 mmol L-1甘露醇渗透胁迫下,转基因植株平均相对发芽率分别是野生型的1.6倍和1.62倍;150、250 mmol L-1甘露醇和150 mmol L-1 NaCl处理下,转基因拟南芥植株平均脯氨酸含量分别是野生型的2.68、1.30和1.30倍;平均相对电导率分别是野生型植株的85%、77%和85%;平均相对根长分别是野生型植株的1.2、1.3和1.2倍;300 mmol L-1 NaCl处理下,转基因植株的平均死亡率为42%,显著低于野生型(90%)(P<0.05);干旱胁迫下,转基因植株的平均死亡率为56%,显著低于野生型(70%)(P<0.05),说明PvP5CS1基因在拟南芥中的表达明显改善了转基因植株的抗旱性和耐盐性。
[1] Bohnert H J, Jensen R G. Strategies for engineering water stress tolerance in plants. Trends Biotechnol, 1996, 14: 89-97[2] Schat H, Sharma S S, Vooijs R. Heavy metal induced accumulation of free proline in a metal-tolerant and a non-tolerant ecotype of Silene vulgaris. Physiol Plant, 1997, 101: 477-482 [3] Trotel P, Bouchereau A, Niogret M F, Larher F. The fate of osmo-regulated proline in leaf discs of rape (Brassica napus L.) incubated in a medium of low osmolarity. Plant Sci, 1996, 118: 31-45 [4] Zhu B, Su J, Chang M, Verma D P S, Fan U L, Wu R. Overexpression of a Δ1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water-and salt-stress in transgenic rice. Plant Sci, 1998, 139: 41-48 [5] Igarashi Y, Yoshiba Y, Sanada Y, Yamaguchi-Shinozaki K, Wada K, Shinozaki K. Characterization of the gene for Δ1- pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa. Plant Mol Biol, 1997, 33: 857-865 [6] Sawahel W A, Hassan A H. Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. Biotechnol Lett, 2002, 24: 721-725 [7] Han K H, Hwang C H. Salt tolerance enhanced by transformation of a P5CS gene in carrot. J Plant Biotechnol, 2003, 5: 149-153 [8] Chen J-B(陈吉宝). Cloning, Function Analysis and Single Nucleotide Polymorphism of Common Bean (Phaseoleae vulgaris L.) P5CS Gene. PhD Dissertation of Chinese Academy and Agricultural Sciences,2008 (in Chinese with English abstract) [9] Chen J B, Wang S M, Jing R L, Mao X G. Cloning the PvP5CS gene from common bean (Phaseolus vulgaris) and its expression patterns under abiotic stresses. J Plant Physiol, 2009, 166: 12-19 [10] Chen J-B(陈吉宝), Jing R-L(景蕊莲), Mao X-G(毛新国), Chang X-P(昌小平), Wang S-M(王述民). A response of PvP5CS2 gene to abiotic stresses in common bean. Acta Agron Sin (作物学报), 2008, 34(7): 1121-1127 (in Chinese with English abstract) [11] Xu C-Y(徐重益), Jing R-L(景蕊莲). Isolation, location and functional analysis of drought-response gene TaPP2Ac/a from wheat (Triticum aestivum L.). PhD Dissertation of Chinese Academy and Agricultural Sciences,2007 [12] Kavi-Kishor P B, Sangam S, Amrutha R N, Laxmi P S, Naidu K R, Rao K R S S, Rao S, Reddy K J, Theriappan P, Sreenivasulu N. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Curr Sci, 2005, 88: 424-438 [13] Verslues P E, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu J K.Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J, 2006, 45: 523-539 [14] Armengaud P, Thiery L, Buhot N, Grenier-De March G, Savouré A. Transcriptional regulation of proline biosynthesis in Medicago truncatula reveals developmental and environmental specific features. Physiol Plant, 2004, 120: 442-450 [15] Kavi-Kishor P B, Hong Z, Miao G H, Hu C A A, Verma D P S. Over expression of Δ1-pyrroline-5-carboxylate synthetase increases proline overproduction and confers osmtolerance in transgenic plants. Plant Physiol, 1995, 108: 1387-1394 [16] Yamada M, Morishita M, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Shinozaki K, Yoshiba Y. Effects of free proline accumulation in petunias under drought stress. J Exp Bot, 2005, 56: 1975-1981 [17] Su J, Wu R. Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci, 2004, 166: 941-948 |
[1] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[2] | 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198. |
[3] | 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221. |
[4] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
[5] | 张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805. |
[6] | 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592. |
[7] | 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623. |
[8] | 高璐, 许文亮. 脯氨酸羟化酶GhP4H2在棉花纤维发育中的功能研究[J]. 作物学报, 2021, 47(7): 1239-1247. |
[9] | 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258. |
[10] | 王吴彬, 童飞, KHAN Mueen Alam, 张雅轩, 贺建波, 郝晓帅, 邢光南, 赵团结, 盖钧镒. 大豆根部水压胁迫耐逆指数遗传体系解析[J]. 作物学报, 2021, 47(5): 847-859. |
[11] | 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612. |
[12] | 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786. |
[13] | 周练, 刘朝显, 熊雨涵, 周京, 蔡一林. 质膜内在蛋白ZmPIP1;1参与玉米耐旱性和光合作用的功能分析[J]. 作物学报, 2021, 47(3): 472-480. |
[14] | 刘亚文, 张红燕, 曹丹, 李兰芝. 基于多平台基因表达数据的水稻干旱和盐胁迫相关基因预测[J]. 作物学报, 2021, 47(12): 2423-2439. |
[15] | 韦还和, 张徐彬, 葛佳琳, 陈熙, 孟天瑶, 杨洋, 熊飞, 陈英龙, 戴其根. 盐胁迫对水稻颖花形成及籽粒充实的影响[J]. 作物学报, 2021, 47(12): 2471-2480. |
|