欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (1): 147-153.doi: 10.3724/SP.J.1006.2010.00147

• 耕作栽培·生理生化 • 上一篇    下一篇

PvP5CS1基因拟南芥植株对干旱和盐胁迫的反应

陈吉宝1,2,赵丽英2,毛新国1,王述民1,*,景蕊莲1,*   

  1. 1中国农业科学院作物科学研究所/农作物基因资源与基因改良国家重大科学工程/农业部作物种质资源与生物技术重点实验室,北京100081;2南阳师范学院生命科学与技术学院,河南南阳473061
  • 收稿日期:2009-09-05 修回日期:2009-09-01 出版日期:2010-01-12 网络出版日期:2009-11-17
  • 通讯作者: 王述民, E-mail: smwang@mail.caas.net.cn, Tel: 010-82108567; 景蕊莲, E-mail: jingrl@caas.net.cn, Tel: 010-62186706
  • 基金资助:

    本研究由车窗科技支撑计划项目(2006BAD13B05)资助。

Response of PvP5CS1 Transgenic Arabidopsis Plants to Drought-and Salt-Stress

CHEN Ji-Bao1,2,ZHAO Li-Ying2,MAO Xin-Guo1,WANG Shu-Min1,*,JING Rui-Lian1   

  1. 1National Key Facility for Crop Gene resources and Genetic Improvement/Key Laboratory of Crop Germplasm & Biotechnology,Ministry of Agriculture/Institute of Crop Sciences,Chinese Academy of Agricultural Sciences,Beijing 100081,China;2School of Life Science and Technology,Nanyang Normal University,Nanyang 473061,China
  • Received:2009-09-05 Revised:2009-09-01 Published:2010-01-12 Published online:2009-11-17
  • Contact: WANG Shu-Min, E-mail: smwang@mail.caas.net.cn, Tel: 010-82108567; 景蕊莲, E-mail: jingrl@caas.net.cn, Tel: 010-62186706

摘要:

为探索普通菜豆脯氨酸合成酶基因P5CS1在植物渗透胁迫中的作用,本研究应用农杆菌介导法,将PvP5CS1基因转入拟南芥,获得6株阳性转基因株系;通过检测转基因植株与野生型植株在干旱和盐胁迫下种子发芽率,幼苗脯氨酸含量、株系电导率、相对根长和成株死亡率,分析了PvP5CS1基因的表达对改善拟南芥抗渗透胁迫的效应。结果表明,150 mmol L-1 NaCl150 mmol L-1甘露醇渗透胁迫下,转基因植株平均相对发芽率分别是野生型的1.6倍和1.62倍;150250 mmol L-1甘露醇和150 mmol L-1 NaCl处理下,转基因拟南芥植株平均脯氨酸含量分别是野生型的2.681.301.30倍;平均相对电导率分别是野生型植株的85%77%85%;平均相对根长分别是野生型植株的1.21.31.2倍;300 mmol L-1 NaCl处理下,转基因植株的平均死亡率为42%,显著低于野生型(90%)(P<0.05);干旱胁迫下,转基因植株的平均死亡率为56%,显著低于野生型(70%)(P<0.05),说明PvP5CS1基因在拟南芥中的表达明显改善了转基因植株的抗旱性和耐盐性。

关键词: PvP5CS1, 脯氨酸, 干旱胁迫, 盐胁迫

Abstract:

Under adverse environment, many plants increase their cell osmotic potential through accumulation of intracellular organic osmolytes-proline. The proline accumulation in plants can not only increase cell osmotic potential but also stabilize proteins, membranes, and subcellular structures as well as protect cells against oxidative damage by reactive oxygen species. Pyrroline- 5-carboxylate synthetase (P5CS), a rate-limiting enzyme involved in the biosynthesis of proline in higher plants, is encoded by P5CS gene. The full length cDNA sequence of PvP5CS1 gene was subcloned into pCHF3 vector and transformed into wild Arabidopsis via Agrobacterium tumefaciens. A total of six positive transgenic plants were obtained. The result of RT-PCR showed that the PvP5CS1 gene was normally expressed in transgenic plants. The T4 generation purified lines of transgenic plants and wild Arabidopsis were used for osmotic stress experiment. Seed relative germination rates of transgenic plants under treatment or non-treatment conditions were all significantly higher than those of wild plants under stress conditions (P<0.001). The average seed relative germination rate of transgenic seedlings was 1.62 times and 1.6 times higher than those of wild plants treated with 150 mmol L-1 mannitol and 150 mmol L-1 NaCl, respectively. Proline content, conductivity rate and root length of eight-day transgenic seedlings under osmatic stress were determined. The results showed that introduction of PvP5CS1 gene into Arabidopsis resulted in significant accumulation of proline. The relative proline content in transgenic plants under stress non-treated conditions were all significantly higher than those in wild type plants (P<0.05). Under four treatments (CK, 150, 250 mmol L-1 mannitol and 150 mmol L-1 NaCl), the average relative proline contents in transgenic plants were 1.38, 2.68, 1.30 and 1.30 times of those in wild type plants. The transgenic plants had longer root and less cell damage than wild plants under osmotic stress conditions. Under 150, 250 mmol L-1 mannitol- and 150 mmol L-1 NaCl-stress conditions, average relative conductivity rate in transgenic plants were 85%,77%, and 85% of that in wild type plants, respectively. The average relative root length in transgenic plants was 1.2,1.3, and 1.2 times of that in wild type plants, respectively. After 300 mmol L-1 NaCl treatment for 15 days, the seedling death rate was 42% and 90% for transgenic and wild type plants, respectively. In the condition of drought stress for 25 days and following by re-watering for 5 days, the seedling death rate of transgenic plants was also significantly lower than that of wild types (P<0.05), which was 56% for transgenic plants and 70% for wild plants. These results indicated that over-expression of PvP5CS1 in transgenic Arabidopsis plants increased plants tolerance to salt and drought stresses.

Key words: PvP5CS1, Proline, Drought stress, Salt stress

[1] Bohnert H J, Jensen R G. Strategies for engineering water stress tolerance in plants. Trends Biotechnol, 1996, 14: 89-97

[2] Schat H, Sharma S S, Vooijs R. Heavy metal induced accumulation of free proline in a metal-tolerant and a non-tolerant ecotype of Silene vulgaris. Physiol Plant, 1997, 101: 477-482


 



[3] Trotel P, Bouchereau A, Niogret M F, Larher F. The fate of osmo-regulated proline in leaf discs of rape (Brassica napus L.) incubated in a medium of low osmolarity. Plant Sci, 1996, 118: 31-45



[4] Zhu B, Su J, Chang M, Verma D P S, Fan U L, Wu R. Overexpression of a Δ1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water-and salt-stress in transgenic rice. Plant Sci, 1998, 139: 41-48



[5] Igarashi Y, Yoshiba Y, Sanada Y, Yamaguchi-Shinozaki K, Wada K, Shinozaki K. Characterization of the gene for Δ1- pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa. Plant Mol Biol, 1997, 33: 857-865



[6] Sawahel W A, Hassan A H. Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. Biotechnol Lett, 2002, 24: 721-725



[7] Han K H, Hwang C H. Salt tolerance enhanced by transformation of a P5CS gene in carrot. J Plant Biotechnol, 2003, 5: 149-153



[8] Chen J-B(陈吉宝). Cloning, Function Analysis and Single Nucleotide Polymorphism of Common Bean (Phaseoleae vulgaris L.) P5CS Gene. PhD Dissertation of Chinese Academy and Agricultural Sciences,2008 (in Chinese with English abstract)



[9] Chen J B, Wang S M, Jing R L, Mao X G. Cloning the PvP5CS gene from common bean (Phaseolus vulgaris) and its expression patterns under abiotic stresses. J Plant Physiol, 2009, 166: 12-19



[10] Chen J-B(陈吉宝), Jing R-L(景蕊莲), Mao X-G(毛新国), Chang X-P(昌小平), Wang S-M(王述民). A response of PvP5CS2 gene to abiotic stresses in common bean. Acta Agron Sin (作物学报), 2008, 34(7): 1121-1127 (in Chinese with English abstract)



[11] Xu C-Y(徐重益), Jing R-L(景蕊莲). Isolation, location and functional analysis of drought-response gene TaPP2Ac/a from wheat (Triticum aestivum L.). PhD Dissertation of Chinese Academy and Agricultural Sciences,2007



[12] Kavi-Kishor P B, Sangam S, Amrutha R N, Laxmi P S, Naidu K R, Rao K R S S, Rao S, Reddy K J, Theriappan P, Sreenivasulu N. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Curr Sci, 2005, 88: 424-438



[13] Verslues P E, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu J K.Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J, 2006, 45: 523-539



[14] Armengaud P, Thiery L, Buhot N, Grenier-De March G, Savouré A. Transcriptional regulation of proline biosynthesis in Medicago truncatula reveals developmental and environmental specific features. Physiol Plant, 2004, 120: 442-450



[15] Kavi-Kishor P B, Hong Z, Miao G H, Hu C A A, Verma D P S. Over expression of Δ1-pyrroline-5-carboxylate synthetase increases proline overproduction and confers osmtolerance in transgenic plants. Plant Physiol, 1995, 108: 1387-1394



[16] Yamada M, Morishita M, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Shinozaki K, Yoshiba Y. Effects of free proline accumulation in petunias under drought stress. J Exp Bot, 2005, 56: 1975-1981



[17] Su J, Wu R. Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci, 2004, 166: 941-948
[1] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[2] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[3] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[4] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[5] 张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805.
[6] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.
[7] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[8] 高璐, 许文亮. 脯氨酸羟化酶GhP4H2在棉花纤维发育中的功能研究[J]. 作物学报, 2021, 47(7): 1239-1247.
[9] 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258.
[10] 王吴彬, 童飞, KHAN Mueen Alam, 张雅轩, 贺建波, 郝晓帅, 邢光南, 赵团结, 盖钧镒. 大豆根部水压胁迫耐逆指数遗传体系解析[J]. 作物学报, 2021, 47(5): 847-859.
[11] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
[12] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786.
[13] 周练, 刘朝显, 熊雨涵, 周京, 蔡一林. 质膜内在蛋白ZmPIP1;1参与玉米耐旱性和光合作用的功能分析[J]. 作物学报, 2021, 47(3): 472-480.
[14] 刘亚文, 张红燕, 曹丹, 李兰芝. 基于多平台基因表达数据的水稻干旱和盐胁迫相关基因预测[J]. 作物学报, 2021, 47(12): 2423-2439.
[15] 韦还和, 张徐彬, 葛佳琳, 陈熙, 孟天瑶, 杨洋, 熊飞, 陈英龙, 戴其根. 盐胁迫对水稻颖花形成及籽粒充实的影响[J]. 作物学报, 2021, 47(12): 2471-2480.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!