欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (05): 810-817.doi: 10.3724/SP.J.1006.2010.00810

• 耕作栽培·生理生化 • 上一篇    下一篇

基于图像分析方法的水稻根系形态特征指标的定量分析

顾东祥,汤亮,曹卫星,朱艳*   

  1. 南京农业大学/江苏省信息农业高技术研究重点实验室,江苏南京210095
  • 收稿日期:2009-10-26 修回日期:2010-02-06 出版日期:2010-05-12 网络出版日期:2010-03-15
  • 通讯作者: 朱艳, E-mail: yanzhu@njau.edu.cn
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2007AA10Z225,2007AA10Z219)和国家重点基础研究发展(973计划)项目(2009CB118608)资助.

Quantitative Analysis on Root Morphological Characteristics Based on Image Analysis Method in Rice

GU Dong-Xiang,TANG Liang,CAO Wei-Xing,ZHU Yan*   

  1. Jiangsu Key Laboratory for Information Agriculture/Nanjing Agricultural University,Nanjing 210095,China
  • Received:2009-10-26 Revised:2010-02-06 Published:2010-05-12 Published online:2010-03-15
  • Contact: ZHU Yang,E-mail:yanzhu@njau.edu.cn

摘要:

利用图像分析方法定量研究水稻根系形态特征指标的变化规律。通过实施不同水氮处理和不同品种的水稻桶栽试验,选用WinRhizo (WR)软件的不同模式(LM和T200)分析根系图像,分别提取根直径范围0~0.30 mm和0.25~1.80 mm的根系形态数据,并与基于Image-Pro Plus 6.0软件(IP)的根直径和不定根长的测量结果进行比较分析;确定了3种水稻品种不同类型根直径的范围;对不同生育时期水稻根长、根体积、根表面积、根系干重和不定根数量等水稻根系形态特征指标变化差异,以及分枝特征进行了分析。结果表明:(1)基于WR软件LM和T200模式下的根直径测量结果与基于IP软件的测量结果之间NRMSE分别为5.44%和10.95%。(2)界定细分枝根直径范围为0.03~0.10 mm,扬稻6号(V3)粗分枝根和不定根分别为0.10~0.30 mm和0.30~1.65 mm,而日本晴(V1)和武香粳14(V2)分别为0.10~0.25 mm和0.25~1.40 mm,不定根长与IP测量结果进行比较,其NRMSE为10.78%~12.01%。(3)各指标抽穗前增长迅速,之后增长减缓或衰老下降;不同氮肥处理间各指标分蘖至成熟均差异显著,增施氮肥可促进根系生长,明显提高不定根比例;适当控水可促进根系生长,明显提高分枝根比例;品种V3自分蘖期到成熟期各指标均显著高于V1和V2,V1与V2间差异不显著。本研究表明,本方法具有较好的精度和可行性,为推进水稻或其他作物根系的定量研究提供了参考。

关键词: 水稻, 根系形态, 定量分析, WinRhizo, 图像分析

Abstract:

The objective of this study was to quantitatively analyze the change patterns of rice root morphological characteristics based on image analysis method in pot experiments with different nitrogen rates, water regimes, and rice cultivars in different years. WinRhizo software (WR) was used as the root image analysis tool, and two modes of LM and T200 were used to measure the root diameter and adventitious root length under two ranges of root diameter as 0–0.30 mm and 0.25–1.80 mm, respectively. The measurement results from WR were compared with those from Image-Pro Plus 6.0 software (IP). Then, the diameter ranges of different types of root were determined. On the basis of the dataset from WR, the statistical analysis were performed on rice root morphological characteristic indices, including dry weight, total volume, total surface area, total adventitious root length and number per plant at different growth stages. The results were as follows: (1) The average NRMSEs between WR (LM and T200) and IP for root diameters were 5.44% and 10.95%. (2) The diameter range of fine lateral root was circumscribed within 0.03–0.10 mm for all the experiments, coarse lateral and adventitious root were circumscribed within 0.10-0.30 and 0.30-1.40 mm for V1 (Nipponbare) and V2 (Wuxiangjing 14), but 0.10–0.25 and 0.25–1.65 mm for V3 (Yangdao 6). Following this method, the NRMSEs for adventitious root length measured by WR and IP were 10.78%–12.01%. (3) All indices increased rapidly in the growth process and reached or approached the maximum at heading, then increased slowly or decreased after heading. There were significant differences between treatments with different nitrogen rates from tillering to maturing on all indices. Increasing nitrogen rate accelerated the growth of roots, and especially enhanced the proportion of adventitious roots. Properly control of irrigation could promote the growth of roots and increase the proportion of lateral roots. All indices of V3 were significantly higher than these of other cultivars, and there were no significant differences between V1 and V2. The results indicated that it was feasible to measure morphological indices of different types of rice root by WR with different modes, and the methods used in this paper have a good accuracy and reliability. These results could provide a support for the quantitative analysis on root morphology of rice or other crops.

Key words: Rice, Root morphology, Quantitative analysis, WinRhizo, Image analysis



[15] Fan X-L(樊小林), Shi Z-J(史正军), Wu P(吴平). Effects of nitrogen fertilizer on parameters of rice (Oryza sativa L.) root architecture and their genotypic difference. J Northwest Sci-Tech Univ Agric & For (Nat Sci Edn)(西北农林科技大学学报·自然科学版), 2002, 30(2): 1–5 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!