欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (06): 979-987.doi: 10.3724/SP.J.1006.2010.00979

• 耕作栽培·生理生化 • 上一篇    下一篇

水稻铁生物强化育种中稻米加工与铁浓度的快速测定方法

贾倩1,2,徐琴2,**,胡霞2,孙勇2,程立锐2,周政2,朱苓华2,赵琦1,徐建龙2,*   

  1. 1首都师范大学生命科学学院,北京100048;2中国农业科学院作物科学研究所/农作物基因资源与遗传改良国家重大科学工程,北京100081
  • 收稿日期:2010-01-08 修回日期:2010-03-01 出版日期:2010-06-12 网络出版日期:2010-04-14
  • 基金资助:

    本研究由中国生物强化项目(8020#)和引进国际先进农业科学技术计划(948计划)项目(2006-G51)资助。

A Robust and Cost-Effective SGOC Method for Testing Rice Iron Concentration in Biofortified Breeding

JIA Qian1,2, XU Qin1**,HU Xia2,SUN Yong2, CHENG Li-Rui2,ZHOU Zheng2,ZHU Ling-Hua2,ZHAO Qi1,XU Jian-Long2,*   

  1. 1 College of Life Science; Capital Normal University, Beijing 100048, China;2 Institute of Crop Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement; Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2010-01-08 Revised:2010-03-01 Published:2010-06-12 Published online:2010-04-14

摘要:

铁对人体的健康十分重要,缺铁已对人类健康和世界经济造成巨大影响。针对我国水稻生物强化育种工作中存在的样品加工过程铁污染严重,以及缺少适合育种群体大规模简便、快速的铁浓度检测手段,本研究发展了一种振荡研磨加工方法和基于邻二氮菲染色的比色测定方法。在研磨程度相同的情况下,经铁制精米机械加工的18个样品中有一半样品的铁浓度显著高于振荡研磨加工的,表明铁制精米加工机械对水稻精米加工存在明显的铁污染。本研究发明的精米振荡研磨加工方法,可以消除加工机械对样品加工过程中的铁污染。尽管对59个铁生物强化后代的测定平均铁浓度邻二氮菲比色法要比ICP-MS高出2.98 mg kg-1但两者的相关系数高达0.87,表明该测定方法适用于大批量育种群体精米铁浓度的初步筛选。ICP-MS相比,邻二氮菲比色法具有简便、快速和低成本的特点。以铁浓度高的水稻种质为供体,导入广西本地高产品种背景,对分离后代采用上述加工和检测方法进行筛选,育成新品系精米的铁浓度比原品种提高了3倍。

关键词: 水稻, 生物强化, 铁污染, 铁浓度测定, 振荡研磨

Abstract:

Iron is an important micro-nutrient to human health. Malnutrition of iron is a serious problem associated with resource poor population of many developing countries. Development and consumption of iron-rich rice varieties are considered one of the ways to solve the problem. To facilitate large-scale screening of breeding materials for iron concentration in the rice iron-biofortified breeding program of China, we developed a new method “surging and grind-milling of orthophenanthroline colorimetry testing” (SGOC). Based on the testing results of 3 sets of 84 diverse rice genotypes that differ greatly in grain iron concentration, the correlation coefficient was as high as 0.87 between the SGOC method and the standard ICP-MS testing method. The per sample cost of the SGOC method was about 0.1$, or 50 times less the ICP-MS method, indicating that the SGOC method is a robust, fast and cost-effective, particularly useful for preliminary screening of the iron concentration of large numbers of early generation breeding materials. Our results demonstrated that milling and polishing with iron-made equipment tended to significantly increase the iron concentration of processed rice, which was also eliminated in the SGOC method. Finally, our results on the 59 BC progeny indicate that introgression of genes/ QTLs for high iron concentration from high iron rice germsperm into elite local rice varieties is an efficient way to develop high yielding rice varieties with significantly improved rice iron concentration in future rice biofortified breeding.

Key words: Rice, Biofortification, Iron contamination, SGOC iron testing

[1] WHO. The World Health Report 2002. Reducing Risks, Promoting Healthy Life. Geneva, Switzerland: World Health Organization, 2002. pp 1–68

[2] World Health Organization. Micronutrient deficiencies: battling iron deficiency anaemia. 2003
[2010-02-08]. http://www.who. int/nut/ida.htm

[3] Gregorio G B. Progress in breeding for trace minerals in staple crops. J Nutr, 2002, 132: 500S–502S

[4] Zhang C-Y(张春义), Wang L(王磊). HarvestPlus-China: Breeding Crops for Better Nutrition (生物强化在中国——培育新品种,提供好营养). Beijing: China Agricultural Science and Technology Press, 2009. pp 9–13 (in Chinese)

[5] Paine J A, Shipton C A, Chaggar S, Howells R M, Kennedy M J, Vernon G, Wright S Y, Hinchliffe E, Adams J L, Silverstone A L, Drake R. Improving the nutritional value of golden rice through increased pro-vitamin A content. Nat Biotechnol, 2005, 23: 4

[6] Zhang C-Y(张春义), Wang L(王磊). HarvestPlus-China: Breeding Crops for Better Nutrition (生物强化在中国——培育新品种,提供好营养). Beijing: China Agricultural Science and Technology Press, 2009. pp 16–17 (in Chinese)

[7] Gregorio G B, Senadhira D, Htut H, Graham R D. Breeding for trace mineral density in rice. Food Nutr Bull, 2000, 21: 382–386

[8] Wang J-Y(王金英), Jiang C(江川), Zheng J-G(郑金贵). The contents of mineral elements in polished rice and bran of various colors. J Fujian Agric For Univ (福建农林大学学报), 2002, 31(4): 409–414 (in Chinese with English abstract)

[9] Li C(李晨), Tu C-Y(涂从勇), Pan D-J(潘大建), Zhou H-Q(周汉钦), Fan Z-L(范芝兰). Prospect and progress on genetics and breeding of iron content in rice seeds. J Plant Genet Resour (植物遗传资源学报), 2003, 4(4): 355–359 (in Chinese with English abstract)

[10] Shen X-H(沈希宏), Cao L-Y(曹立勇), Shao G-S(邵国胜), Zhan X-D(占小登), Chen S-G(陈深广), Wu W-M(吴伟明), Cheng S-H(程式华). QTL mapping for the content of five trace elements in brown rice. Mol Plant Breed (分子植物育种), 2008, 6(6): 1061–1067 (in Chinese with English abstract)

[11] Zeng Y-W(曾亚文), Wang L-X(汪禄祥), Du J(杜娟), Yang S-M(杨树明), Wang Y-C(王雨辰), Li Q-W(黎其万), Sun Z-H(孙正海), Pu X-Y(普晓英), Du W(杜威). Correlation of mineral elements between milled and brown rice and soils in Yunnan studied by ICP-AES. Spectroscopy Spectral Anal (光谱学与光谱分析), 2009, 29(5): 1413–1417 (in Chinese with English abstract)

[12] Zhang M-W(张名位). Research on several micronutrients in black glutinous rice. In: Special Rice Academic Research in China (中国特种稻学术研究研讨会论文集). Shanghai: Shanghai Scientific and Technical Publishers, 1992. pp 419–423 (in Chinese)

[13] Jiang B(蒋彬). Differences in concentrations of Fe, Cu, Mn and Zn in polished rice grains. J Zhaotong Teacher’s Coll (昭通师范高等专科学校学报), 2002, 24(2): 45–48 (in Chinese with English abstract)

[14] Gregorio G B, Senadhira D, Htut T, Graham R D. Improving iron and zinc value of rice for human nutrition. Agric Dev,1999, 23: 68–81

[15] Yang X, Ye Z Q, Shi C H, Zhu M L, Glanl R D. Genotypic differences in concentrations of iron,manganese, copper and zinc in polished rice grains. J Plant Nutr, 1998, 21: 1453–1462

[16] E S-Z(俄胜哲), Yuan J-C(袁继超), Yao F-J(姚凤娟), Ding Z-Y(丁志勇), Yu X-P(喻晓坪), Luo F-X(罗付香). Analysis of mineral elements content variation in rice in Panxi and adjacent regions. J Sichuan Agric Univ (四川农业大学学报), 2004, 22(4): 314–317 (in Chinese with English abstract)

[17] Zeng Y-W(曾亚文), Liu J-F(刘家富), Wang L-X(汪禄祥), Shen S-Q(申时全), Li Z-C(李自超), Wang X-K(王象坤), Wen G-S(文国松), Yang Z-Y(杨忠义). Varietal type and mineral elements content of core collection in Yunnan rice. Chin J Rice Sci (中国水稻科学), 2003, 17(1): 25–30 (in Chinese with English abstract)

[18] Haas J D, Beard J L, Murray-Kolb L E, del Mundo A M, Felix A, Gregorio G B. Iron-biofortified rice improves the iron stores of nonanemic Filipino women. J Nutr, 2005, 135: 2823–2830

[19] Lai L-Z(赖来展), Zhang M-W(张名位), Peng Z-M(彭仲明), Chen C-H(陈春洪). Evaluation and utilization research of black pericarp rice germplasm resources. Crop Genet Resour (作物品种资源), 1994, (suppl): 58–64 (in Chinese with English abstract)

[20] Zhang M-W(张名位), Du Y-Q(杜应琼), Peng Z-M(彭仲明), He C-X(何慈信). Genetic effects of mineral elements of Fe, Zn, Mn and P in black pericarp rice grains. Acta Genet Sin (遗传学报), 2000, 27(9): 792–799(in Chinese with English abstract)

[21] Gregorio G B, Senadhira D, Htut T, Graham R D. Breeding for trace mineral density in rice. Food Nutr Bull, 2000, 21: 382–386

[22] Cabuslay G S, Sison C B, Laureles E, Buresh R, Lazaro W, Gregorio G B. Grain Mineral density nitrogen response and seasonal variation. Workshop on Rice Breeding for Better Nutrition, 2003, 4: 7–11

[23] Abilgos R G, Manaois R V, Escubio S S, Gurcia A D G. Seasonal Effects of an Iron Content of Iron-Dense Philippine Rices Harvested in Two Locations.Philippine Rice Research and Development Highlights, 2004, 4: 92–94

[24] Jiang C(江川), Wang J-Y(王金英), Zheng J-G(郑金贵). Mineral nutrient contents in polished rice under different environments. Fujian J Agric Sci (福建农业学报), 2004, 19(1): 1–6 (in Chinese with English abstract)

[25] Liu X-H(刘宪虎), Sun C-Q(孙传清), Wang X-K(王象坤). Studies on the content of four elements Fe, Zn, and Se in rice varieties from various area of China. Acta Agric Univ Pekinensis (北京农业大学学报), 1995, 21(2): 138–142 (in Chinese with English abstract)

[26] Tin H. Inheritance of Grain Iron Density in Rice (Oryza sativa L.). PhD Dissertation of University of the Philippines, Los Banos, Laguna, Philippines, 2000
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!