欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (11): 1941-1949.doi: 10.3724/SP.J.1006.2010.01941

• 耕作栽培·生理生化 • 上一篇    下一篇

盐胁迫下高粱新生叶片结构和光合特性的系统调控

王鑫1,2,李志强3,谷卫彬1,石雷1,唐宇丹1,高辉远2,赵世杰2,姜闯道1   

  1. 1中国科学院植物研究所,北京100093;2山东农业大学生命科学学院,山东泰安271018;3北京农业职业技术学院,北京102442
  • 收稿日期:2010-04-06 修回日期:2010-06-27 出版日期:2010-11-12 网络出版日期:2010-08-30
  • 通讯作者: 姜闯道, E-mail: jcdao@ibcas.ac.cn, Tel: 010-62836657
  • 基金资助:

    本研究由国家自然科学基金项目(30770223和30871455)和国家作物重点实验室开放基金(2010KF04)资助。

Systemic Regulation of Structure and Photosynthetic Characteristics in Developing Leaves in Sorghum Seedlings under Salt Stress

WANG Xin1,2,LI Zhi-Qiang3,GU Wei-Bin1,SHI-Lei1,TANG Yu-Dan1,GAO Hui-Yuan2,ZHAO Shi-Jie2,JIANG Chuang-Dao1,*   

  1. 1 Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; 2 College of Life Sciences, Shandong Agriculture University, Tai’an 271018, China; 3 Beijing Vocational College of Agriculture, Beijing 102442, China
  • Received:2010-04-06 Revised:2010-06-27 Published:2010-11-12 Published online:2010-08-30
  • Contact: JIANG Chuang-Dao,E-mail:jcdao@ibcas.ac.cn,Tel:010-62836657

摘要: 以C4作物高粱为材料,研究了盐胁迫下新生叶片结构和光合特性的系统调控。结果表明:(1)盐胁迫导致成熟叶和新生叶水势、光合速率、气孔导度明显下降,光抑制程度略有增强;并且新生叶片上下表面气孔密度均增加。(2)非盐胁迫条件下,成熟叶遮荫对其自身和新生叶水势影响不显著,但两者光合速率、气孔导度和叶片可溶性糖含量降低,对强光敏感性增强;同时,降低成熟叶光强还显著降低新生叶的叶片厚度、气孔密度、维管束鞘细胞表面积;(3)盐胁迫下成熟叶遮荫诱导的新生叶结构和光合功能变化与非盐胁迫条件下趋势相似。双因素方差分析显示,盐胁迫下成熟叶遮荫能明显加剧高粱成熟叶和新生叶两者光合速率和气孔导度的下降并增强对强光的敏感性。因此认为,盐胁迫下高粱新生叶片的结构和光合功能均受到系统信号调控;提高成熟叶所处环境光强有助于改善盐胁迫下新生叶发育和碳同化能力,并一定程度上缓解光抑制。这对理解盐胁迫下高粱抗盐性具有重要意义。

关键词: 盐胁迫, 光合特性, 系统调控, 光抑制, 高粱

Abstract: The influences of a systemic signal, from mature leaves, on the photosynthetic characteristics of developing leaves in sorghum seedlings under salt stress were carefully investigated. Salt stress significantly decreased water potential, net photosynthetic rate, stomatal conductance and slightly increased extent of photoinhibition both in mature and newly developed leaves. In newly developed leaves, stomatal density of both adaxial and abaxial surfaces increased. Under non-salt stress condition, water potential both in mature and newly developed leaves was hardly affected when mature leaves exposed to weak light. However, carbon assimilation, stomatal conductance, soluble sugar content decreased markedly and the extent of photoinhibition increased largely in mature leaves and newly developed leaves due to the shading of mature leaves. Meanwhile, stomatal density, mesophyll thickness and surface area of bundle sheath decreased in newly developed leaves when light intensity decreased for mature leaves. In salt-stressed group, changes in photosynthetic structure and function had a similar tendency with that in non-salt stress group, but a further decline in photosynthesis was observed. Two-way ANOVA among these four treatments showed that there was a synergistic effect between salt stress and high irradiance which impaired the photosynthetic ability more heavily and enhanced photoinhibition. Accordingly, we concluded that there is a systemic regulation on the photosynthetic structure and performance of newly developed leaves under salt stress. The enhancement of the light intensity of mature leaves is very important for the improvement of development, carbon assimilation and the alleviation of photoinhibition in newly developed leaves under salt stress.

Key words: Salt stress, Photosynthetic characteristics, Systemic regulation, Photoinhibition, Sorghum

[1]Bongi G, Loreto F. Gas-exchange properties of salt-stressed olive (Olea europea L.) leaves. Plant Physiol, 1989, 90: 1408–1416
[2]Mishra S K, Subrahmanyam D, Singhal G S. Interactionship between salt and light stress on the primary process of photosynthesis. J Plant Physiol, 1991, 138: 92–96
[3]Sharma P K, Hall D O. Interaction of salt stress and photoinhibition on photosynthesis in barley and sorghum. J Plant Physiol, 1991, 138: 614–619
[4]Belkhodja R, Morales F, Abadia A, Gomez-Aparisi J, Abadia J. Chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley (Hordeum vulgare L.). Plant Physiol, 1994, 104: 667–673
[5]Masojidek J, Hall D O. Salinity and drought stresses are amplified by high irradiance in sorghum. Photosynthetica, 1992, 27: 159–171
[6]Melgar J C, Guidi L, Remorini D, Agati G, Degl’Innocenti E, Castelli S, Baratto, M C, Faraoni C, Tattini M. Antioxidant defenses and oxidative damage in salt-treated olive plants under contrasting sunlight irradiance. Tree Physiol, 2009, DOI:10.1093/treephys/tpp047
[7]Allakhverdiev S I, Nishiyama Y, Miyairi S, Yamamoto H, Inagaki N, Kanesaki Y, Murata N. Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA genes in Synechocystis. Plant Physiol, 2002, 130: 1443–1453
[8]Murata N, Takahashi S, Nishiyama Y, Allakhverdiev S I. Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta, 2007, 1767: 414–421
[9]Xu D-Q(许大全), Zhang Y-Z(张玉忠), Zhang R-X(张荣铣). Photoinhibition of photosynthesis in plants. Plant Physiol Commun (植物生理学通讯), 1992, 28: 237–243 (in Chinese)
[10]Demmig-Adams B, Adams W W. Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol, 1992, 43: 599–626
[11]Wu Z-F(吴正锋), Wang C-B(王才斌), Li X-G(李新国), Wang F-H (王法宏), Wan S-B(万书波), Liu J-H(刘俊华), Zheng Y-P(郑亚萍), Sun K-X(孙奎香). Effects of shading at seedling stage on photosynthetic characteristic of Arachis hypoaea L. leaves. Acta Ecol Sin (生态学报), 2009, 29(3): 1366–1373 (in Chinese with English abstract)
[12]Guo F(郭峰), Qu Y-Y(曲妍妍), Xin C-P(信长朋), Liang Y(梁燕), Liang X(梁雪), Tian J-C(田纪春), Meng Q-W(孟庆伟), Zhao S-J(赵世杰). Response of photosynthetic apparatus to different irradiance in flag leaves of high-yielding winter wheat PH01-35 grown under low light conditions. Acta Agron Sin (作物学报), 2009, 35(1): 179−184 (in Chinese with English abstract)
[13]Yang X-H(杨兴洪), Zou Q(邹琦), Zhao S-J(赵世杰). Photosynthetic characteristics and chlorophyll fluorescence in leaves of cotton plants grown in full light and 40% sunlight. Acta Phytoecol Sin (植物生态学报), 2005, 29(1): 8–15 (in Chinese with English abstract)
[14]Bongi G, Long S P. Light dependent damage to photosynthesis in olive leaves during chilling and high temperature stress. Plant, Cell Environ, 1987, 10: 241–249
[15]Lake J A, Quick W P, Beerling D J, Woodward F I. Plant development: signals from mature to new leaves. Nature, 2001, 411: 154
[16]Thomas P W, Woodward F I, Quick W P. Systemic irradiance signalling in tobacco. New Phytol, 2004, 161: 193–198
[17]Yano S, Terashima I. Separate localization of light signal perception for sun or shade type chloroplast and palisade tissue differentiation in Chenopodium album. Plant Cell Physiol, 2001, 42: 1303–1310
[18]Karpinski S, Reynolds H, Karpinska B, Creissen G, Wingsle G, Mullineaux P. Systemic signalling and acclimation in response to excess excitation energy in Arabidopsis. Science, 1999, 284: 654–657
[19]Li D-J(黎大爵), Liao F-S(廖馥荪). Sweet Sorghum and Utility. Beijing: Science Press, 1992. p 17
[20]Ge J-L(葛江丽), Shi L(石雷), Gu W-B(谷卫彬), Tang Y-D(唐宇丹), Zhang J-Z(张金政), Jiang C-D(姜闯道), Ren D-M(任大明). Photosynthetic characteristics and the regulation of photosystem II function in salt-stressed sweet sorghum seedlings. Acta Agron Sin (作物学报), 2007, 33(8): 1272–1278 (in Chinese with English abstract)
[21]Li P-M(李鹏民), Gao H-Y(高辉远), Strasser R J. Application of the chlorophyll fluorescence induction dynamics in photosynthesis study. J Plant Physiol Mol Biol, 2005, 31: 559–566 (in Chinese with English abstract)
[22]Jiang C D, Li P M, Gao H Y. Enhanced photoprotection at the early stages of leaf expansion in field-grown soybean plants. Plant Sci, 2005, 168: 911–919
[23]Jiang C D, Jiang G M, Wang X Z. Increased photosynthetic activities and thermostability of photosystem II with leaf development of Elm seedlings (Ulmus Punila) probed by the fast fluorescence rise OJIP. Environ Exp Bot, 2006, 58: 261–268
[24]Coupe S A, Palmer B G, Lake J A, Overy S A, Oxborough K, Woodward F I, Gray J E, Quick W. Systemic signalling of environmental cues in Arabidopsis leaves. J Exp Bot, 2006, 57: 329–341
[25]Thain J F. Curvature correction factors in the measurement of cell surface areas in plant tissues. J Exp Bot, 1983, 34: 87–94
[26]Zhao S-J(赵世杰), Shi G-A(史国安), Dong X-C(董新纯). Laboratory Guide for Plant Physiology. Beijing: Beijing Science & Technology Press, 2002. pp 84–85
[27]Gregoriou K, Pontikis K, Vemmos S. Effects of reduced irradiance on leaf morphology, photosynthetic capacity, and fruit yield in olive (Olea europaea L.). Photosynthetica, 2007, 45: 172–181
[1] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[2] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[3] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[4] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[5] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.
[6] 党科, 宫香伟, 吕思明, 赵冠, 田礼欣, 靳飞, 杨璞, 冯佰利, 高小丽. 糜子/绿豆间作模式下施氮量对绿豆叶片光合特性及产量的影响[J]. 作物学报, 2021, 47(6): 1175-1187.
[7] 王媛, 王劲松, 董二伟, 武爱莲, 焦晓燕. 长期施用不同剂量氮肥对高粱产量、氮素利用特性和土壤硝态氮含量的影响[J]. 作物学报, 2021, 47(2): 342-350.
[8] 刘亚文, 张红燕, 曹丹, 李兰芝. 基于多平台基因表达数据的水稻干旱和盐胁迫相关基因预测[J]. 作物学报, 2021, 47(12): 2423-2439.
[9] 董二伟, 王劲松, 武爱莲, 王媛, 王立革, 韩雄, 郭珺, 焦晓燕. 行距和密度对高粱籽粒灌浆、淀粉及氮磷钾累积特征的影响[J]. 作物学报, 2021, 47(12): 2459-2470.
[10] 韦还和, 张徐彬, 葛佳琳, 陈熙, 孟天瑶, 杨洋, 熊飞, 陈英龙, 戴其根. 盐胁迫对水稻颖花形成及籽粒充实的影响[J]. 作物学报, 2021, 47(12): 2471-2480.
[11] 张云, 王丹媚, 王孝源, 任晴雯, 唐可, 张丽宇, 吴玉环, 刘鹏. 外源茉莉酸对菊芋镉胁迫下光合特性及镉积累的影响[J]. 作物学报, 2021, 47(12): 2490-2500.
[12] 辛正琦, 代欢欢, 辛余凤, 何潇, 谢海艳, 吴能表. 盐胁迫下外源2,4-表油菜素内酯对颠茄氮代谢及TAs代谢的影响[J]. 作物学报, 2021, 47(10): 2001-2011.
[13] 冯克云, 王宁, 南宏宇, 高建刚. 水分亏缺下化肥减量配施有机肥对棉花光合特性与产量的影响[J]. 作物学报, 2021, 47(1): 125-137.
[14] 韦还和,葛佳琳,张徐彬,孟天瑶,陆钰,李心月,陶源,丁恩浩,陈英龙,戴其根. 盐胁迫下粳稻品种南粳9108分蘖特性及其与群体生产力的关系[J]. 作物学报, 2020, 46(8): 1238-1247.
[15] 张瑞栋,肖梦颖,徐晓雪,姜冰,邢艺凡,陈小飞,李邦,艾雪莹,周宇飞,黄瑞冬. 高粱种子对萌发温度的响应分析与耐低温萌发能力鉴定[J]. 作物学报, 2020, 46(6): 889-901.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!