作物学报 ›› 2011, Vol. 37 ›› Issue (02): 271-279.doi: 10.3724/SP.J.1006.2011.00271

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇



  1. 1 河南农业大学农学院, 河南郑州 450002; 2 河南科技大学农学院, 河南洛阳 471003; 3 河南科技学院生命科技学院, 河南新乡 453003
  • 收稿日期:2010-03-25 修回日期:2010-08-05 出版日期:2011-02-12 网络出版日期:2010-11-16
  • 通讯作者: 陈彦惠, E-mail: chy989@sohu.com
  • 基金资助:


Detection of Quantitative Trait Loci for Plant Height in Different Photoperiod Environments Using an Immortalized F2 Population in Maize

WANG Cui-Ling1,2,SUN Zhao-Hui1,KU Li-Xia1,WANG Tie-Gu3,CHEN Yan-Hui1,*   

  1. 1 College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; 2 College of Agronomy, Henan University of Science and Technology, Luoyang 471003, China; 3 College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
  • Received:2010-03-25 Revised:2010-08-05 Published:2011-02-12 Published online:2010-11-16

摘要: 为了研究热带玉米株高的遗传机制, 利用温热组合黄早四×CML288衍生的重组自交系群体构建了一个包含278个组合的永久F2群体, 分别在海南三亚、河南郑州和洛阳、北京昌平和顺义等5个地点3种光周期环境中进行株高鉴定。利用复合区间作图法在3种光周期环境下共定位到12个不同的玉米株高QTL。位于第1染色体上的qPH1-2和位于第4染色体上的QTL qPH4在3个环境中同时被检测到, 表明这2个QTL在不同日照环境下均能稳定表达。位于第3染色体上的qPH3在短日照环境下能解释株高遗传变异的32.13%, 而在2个长日照环境下并未被检测到, 表明此QTL是短日照环境下特异表达的主效QTL。第10染色体上QTL qPH10-1分别解释2个长日照环境中株高遗传变异的25.39%和39.58%, 是长日照环境下特异表达的主效株高QTL。

关键词: 永久F2群体, 光周期, 热带玉米, 株高, QTL

Abstract: For studying the genetic basis of plant height in maize, an immortalized F2 population of 278 F1 cross was constructed by intercrossing recombinant inbred lines derived from a cross between temperate and tropical inbred lines (Huangzaosi × CML288). The “immortalized F2” was evaluated for plant height in five locations with three photoperiod environments, i.e. a short day environment of Sanya in Hainan province, long-day environments of Zhengzhou and Luoyang in Henan province, and long-day environments of Shunyi and Changping in Beijing. Twelve QTLs for plant height were detected in different photoperiod environments using composite interval mapping. The QTLs qPH1-2 and qPH4 associated with plant height were detected in all the three photoperiod environments, showing that these two QTLs might control plant height steadily in different environments. The QTL qPH3 was detected for plant height and explained 32.13% of the phenotypic variation in short day environment while could not be detected in long day environment, which indicated that the QTL qPH3 might control plant height only in short day environment. The QTL qPH10-1 in the bin 10.04 region of chromosome 10 associated with plant height was detected in long day environments of Henan and Beijing and explained 25.39% and 39.58% of the phenotypic variation, respectively. This result indicated that the QTL qPH10-1 might be a major plant height QTL in long day environment.

Key words: Immortalized F2 population, Photoperiod, Tropical maize (Zea mays L.), Plant height, QTL

[1]Zhang Z M, Zhao M J, Ding H P, Rong T Z, Pan G T. Quantitative trait loci analysis of plant height and ear height in maize (Zea mays L.). Russian J Genet, 2006, 42: 306–310
[2]Ragot M, Sisco P H, Hoisington D A. Molecular marker mediated characterization of favorable exotic alleles and quantitative trait loci in maize. Crop Sci, 1995, 35: 1306–1315
[3]Beavis W D, Grant D, Albertsen M, Fincher R. Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theor Appl Genet, 1991, 83: 141–145
[4]Melchinger A E, Utz H F, Schon C C. Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics, 1998, 149: 383–403
[5]Stuber C W, Lincoln S E, Wolff D W, Helentjaris T, Lander E S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics, 1992, 132: 823–839
[6]Wang Y, Yao J, Zhang Z F, Zheng Y L. The comparative analysis based on maize integrated QTL map and meta-analysis of plant height QTLs. Chin Sci Bull, 2006, 51: 2219–2230
[7]Yan J-B(严建兵), Tang H(汤华), Huang Y-Q(黄益勤), Shi Y-G(石永刚), Li J-S(李建生), Zheng Y-L(郑用琏). Dynamic analysis of QTL for plant height at different developmental stages in maize (Zea mays L.). Chin Sci Bull (科学通报), 2003, 48(18): 1959–1964 (in Chinese)
[8]Tang J H, Teng W T, Yan J B, Ma X Q, Meng Y J, Dai J R, Li J S. Genetic dissection of plant height by molecular markers using a population of recombinant inbred lines in maize. Euphytica, 2007, 155: 117–124
[9]Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler E S. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001, 28: 286–289
[10]Spray C R, Kobayashi M, Suzuki Y, Phinney B O, Gaskin P, MacMillan J. The dwarf-1 (d1) mutant of Zea mays blocks three steps in the gibberellin-biosynthetic pathway. Proc Natl Acad Sci USA, 1996, 93: 10515–10518
[11]Winkler R G, Helentjaris T. The maize dwarf3 gene encodes a cytochrome p450-mediated early step in gibberellin biosynthesis. Plant Cell, 1995, 7: 1307–1317
[12]Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L E, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M, Harberd N. Green revolution genes encode mutant gibberellin response modulators. Nature, 1999, 400: 256–261
[13]Hua J P, Xing Y Z, Wu W R, Xu C G, Yu S B, Sun X L, Zhang Q F. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA, 2003, 100: 2574–2579
[14]Hua J P, Xing Y Z, Xu C G, Sun X L, Yu S B, Zhang Q F. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics, 2002, 162: 1885–1895
[15]Lincoln S E, Daly M J, Lander E S. Constructing Genetic Linkage Maps with MAPMARKER/EXP Version 3.0: A Tutorial and Reference Manual, 3rd ed. Cambridge M A: Whitehead Institute for Biometrical Research, 1993
[16]Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping. Genetics, 1994, 138: 963–971
[17]Stuber C W, Edwards M D, Wendel J F. Molecular marker facilitated investigations of quantitative trait loci in maize: II. Factors influencing yield and its component traits. Crop Sci, 1987, 27: 639–648
[18]Yang X-J(杨晓军), Lu M(路明), Zhang S-H(张世煌), Zhou F (周芳), Qu Y-Y(曲延英), Xie C-X(谢传晓). QTL mapping of plant height and ear position in maize (Zea mays L.). Hereditas (遗传), 2008, 30(11): 1477–1486(in Chinese with English abstract)
[19]Beavis W D, Smith O S, Grant D, Fincher R. Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny from maize. Crop Sci, 1994, 34: 882–896
[20]Lubberstedt T, Melchinger A E, Schon C C, Utz H F, Klein D. QTL mapping in testcrosses of European flint lines of maize: 1. Comparison of different testers for forage yield traits. Crop Sci, 1997, 37: 921–931
[21]Melchinger A E, Gonzalezde L D, Hoisington D A. Molecular mapping of QTL for southwestern corn borer resistance, plant height and flowering in tropical maize. Plant Breed, 1998, 117: 309–318
[22]Schon C C, Lee M, Melchinger A E, Guthrie W D, Woodman W L. Mapping and characterization of quantitative trait loci affecting resistance against 2nd-generation European corn borer in maize with the aid of RFLPs. Heredity, 1993, 70: 648–659
[23]Berke T, Rocheford T. Quantitative trait loci for flowering, plant and ear height, and kernel traits in maize. Crop Sci, 1995, 35: 1542–1549
[24]Bohn M, Khairallah M M, Gonzalezde L D, Hoisington D A, Utz H F, Deutsch J A, Jewell D C, Mihm J A, Melchinger A E. QTL mapping in tropical maize: 1. Genomic regions affecting leaf feeding resistance to sugarcane borer and other traits. Crop Sci, 1996, 36: 1352–1361
[25]Abler B S, Edwards M D, Stuber C W. Isoenzymatic identification of quantitative trait loci in crosses of elite maize inbreds. Crop Sci, 1991, 31: 267–274
[26]Ajmone M P, Monfredini G, Ludwig W F, Melchinger A E, Franceschini P, Pagnotto G, Motto M. Identification of genomic regions affecting plant height and their relationship with grain yield in an elite maize cross. Maydica, 1994, 39: 133–139
[27]Kozumplik V, Pejic I, Senior L, Pavlina R, Graham G, Stuber C W. Molecular markers for QTL detection in segregating maize populations derived from exotic germplasm. Maydica, 1996, 41: 211–217
[28]Schon C C, Melchinger A E, Boppenmaier J, Brunklaus J E, Herrmann R G, Seitzer J F. RFLP mapping in maize quantitative trait loci affecting testcross performance of elite European flint lines. Crop Sci, 1994, 34: 378–389
[29]Khairallah M M, Bohn M, Jiang C, Deutsch J A, Jewell D C, Mihm J A, Beavis W D, Smith O S, Grant D, Fincher R. Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny from maize. Crop Sci, 1994, 34: 882–896
[30]Wang C L, Cheng F F, Sun Z H, Tang J H, Wu L C, Ku L X, Chen Y H. Genetic analysis of photoperiod sensitivity in a tropical by temperate maize recombinant inbred population using molecular markers. Theor Appl Genet, 2008, 117: 1129–1139
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[3] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[4] 徐昕, 秦超, 赵涛, 刘斌, 李宏宇, 刘军. GmELF3s调控大豆开花时间和生物钟节律的功能分析[J]. 作物学报, 2022, 48(4): 812-824.
[5] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[6] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[7] 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480.
[8] 罗兰, 雷丽霞, 刘进, 张瑞华, 金桂秀, 崔迪, 黎毛毛, 马小定, 赵正武, 韩龙植. 利用东乡普通野生稻染色体片段置换系定位产量相关性状QTL[J]. 作物学报, 2021, 47(7): 1391-1401.
[9] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[10] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[11] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[12] 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461.
[13] 王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因[J]. 作物学报, 2021, 47(12): 2407-2422.
[14] 吕国锋, 别同德, 王慧, 赵仁慧, 范金平, 张伯桥, 吴素兰, 王玲, 汪尊杰, 高德荣. 长江下游麦区新育成品种(系) 3种主要病害的抗性鉴定及抗病基因/ QTL的分子检测[J]. 作物学报, 2021, 47(12): 2335-2347.
[15] 马猛, 闫会, 高闰飞, 后猛, 唐维, 王欣, 张允刚, 李强. 紫甘薯SSR标记遗传图谱构建与重要农艺性状QTL定位[J]. 作物学报, 2021, 47(11): 2147-2162.
Full text



No Suggested Reading articles found!