欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (04): 587-594.doi: 10.3724/SP.J.1006.2011.00587

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

番茄冷诱导基因SlCMYB1的克隆及其在水稻中异源表达研究

张欣1,程治军1,林启冰1,王久林1,万建民1,2,*   

  1. 1 中国农业科学院作物科学研究所,北京100081;2 南京农业大学作物遗传与种质创新国家重点实验室 / 江苏省植物基因工程技术研究中心, 江苏南京210095
  • 收稿日期:2010-10-28 修回日期:2011-01-06 出版日期:2011-04-12 网络出版日期:2011-02-24
  • 通讯作者: 万建民, E-mail: wanjm@caas.net.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30570995),国家转基因植物研究与产业化专项(2008ZX08010)和国家高技术研究发展计划(863计划)项目(2006AA100101)资助。

Cloning of Cold-Inducible Gene SlCMYB1 and Its Heterologous Expression in Rice

  • Received:2010-10-28 Revised:2011-01-06 Published:2011-04-12 Published online:2011-02-24
  • Contact: 万建民, E-mail: wanjm@caas.net.cn

摘要: 从番茄中克隆了一个编码MYB转录因子家族R2R3-MYB亚类基因SlCMYB1。不同逆境胁迫下的表达模式分析结果表明,该基因受低温、高盐、干旱和ABA胁迫诱导表达。洋葱表皮亚细胞定位研究表明,SlCMYB1为核定位蛋白。为深入了解SlCMYB1基因与非生物逆境应答的关系,我们构建了SlCMYB1基因过表达载体来转化水稻,获得了16个转基因水稻株系。SlCMYB1在水稻中异源表达能显著提高转基因水稻植株的苗期抗冷性,增加脯氨酸合成的关键酶基因OsP5CS1,膜转运蛋白基因OsWCOR413等低温胁迫应答基因的表达水平,这暗示着SlCMYB1OsP5CS1OsWCOR413基因处于同一低温调控信号转导路径。本研究结果为通过遗传工程操控低温信号通路的方法改良冷敏感植物抗冷性提供了理论基础。

关键词: R2R3-类型MYB转录因子, SlCMYB1, 水稻, 抗冷性

Abstract: We isolated a cDNA clone, designated SlCMYB1 (for Solanum lycopersicum Cold MYB 1), from tomato by analyzing the previous microarray data of the low temperature transcriptome of tomato. SlCMYB1 encodes a R2R3-MYB family gene, which contains a conserved DNA-binding domain composed of two repeat motifs. The SlCMYB1-GFP fusion protein was localized to the nucleus in a transient expression assay. Expression of SlCMYB1 was not only strongly induced by cold and salt, but also by dehydration and abscisic acid (ABA). To understand function of SlCMYB1 in crop plants under stress conditions, we generated transgenic plants in rice over-expressing SlCMYB1 under control of the CaMV 35S promoter. Preliminary results showed that overexpression of SlCMYB1 in rice induced constitutive expression of the cold-responsive gene OsP5CS1 and OsWCOR413 and might be conferred enhanced tolerance to cold treatments for non-acclimated transgenic plants, compared with wild type plants. Our data suggest that SlCMYB1 might play an important role in plant responses to cold stress by regulating cold-responsive gene expression and might be a useful gene for improving cold tolerance in crop plants.

Key words: R2R3-type MYB transcriptional factor, SlCMYB1, Rice, Cold tolerance

[1]Rubio V, Linhares F, Solano R, Martín A C, Iglesias J, Leyva A, Paz-Ares J. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes & Dev, 2001, 15: 2122–2133
[2]Paz-Ares J, Ghosal D, Wienand U, Peterson P A, Saedler H. The regulatory CI locus of Zea mays encodes a protein with homology to myb oncogene products and with structural similarities to transcriptional activators. Eur Mol Biol Organi J, 1987, 6: 3553–3558
[3]Golay J, Basilico L, Loffarelli L, Songia S, Broccoli V, Introna M. Regulation of hematopoietic cell proliferation and differentiation by the myb oncogene family of transcription factors. Int J Clin Lab Res, 1996, 26: 24–32
[4]Loguerico L L, Zhang J Q, Wilkins T A. Differential regulation of six novel MYB-domain genes defines two distinct expression patterns in allotetraploid cotton (Gossypium Hirsutum L.). Mol Gen Genet, 1999, 261: 660–671
[5]Miyake K, Ito T, Senda M, Ishikawa R, Harada T, Niizeki M, Akada S. Isolation of a subfamily of genes for R2R3-MYB transcription factors showing up-regulated expression under nitrogen nutrient-limited conditions. Plant Mol Biol, 2003, 53: 237–245
[6]Waites R, Selvadurai H R, Oliver I R, Hudson A. The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell, 1998, 93: 779–789
[7]Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol, 2001, 4: 447–456
[8]Rabinowicz P D, Braun E L, Wolfe A D, Bowen B, Grotewold E. Maize R2R3-Myb genes: sequence analysis reveals amplification in the higher plants. Genetics, 1999, 153: 427–444
[9]Cedroni M L, Cronn R C, Adams K L, Wilkins T A, Wendel J F. Evolution and expression of MYB genes in diploid and polyploid cotton. Plant Mol Biol, 2003, 51: 313–325
[10]Zhu J, Verslues P E, Zheng X, Lee B H, Zhan X, Manabe Y, Sokolchik I, Zhu Y, Dong C H, Zhu J K, Hasegawa P M, Bressan R A. HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proc Natl Acad Sci USA, 2005, 102: 9966–9971
[11]Agarwal M, Hao Y, Kapoor A, Dong C H, Fujii H, Zheng X, Zhu J K. A R2R3-type MYB transcription factor is involved in the cold-regulation of CBF genes and in acquired freezing tolerance. J Biol Chem, 2006, 281: 37636–37645
[12]Tian C, Wan P, Sun S, Li J, Chen M. Genome-wide analysis of the GRAS gene family in rice and Arabidopsis. Plant Mol Biol, 2004, 54: 519–532
[13]Liao Y, Zou H F, Wang H W, Zhang W K, Chen S Y. Soybean GmMYB76, GmMYB92, and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants. Cell Res, 2008, 18: 1047–1060
[14]Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K. Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol, 2007, 143: 1739–1751
[15]Zhang X, Fowler S G, Cheng H, Lou Y, Rhee S Y, Stockinger E J, Thomashow M F. Freezing sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing tolerant Arabidopsis. Plant J, 2004, 39: 905–919
[16]Tamura K, Dudley J, Nei M, Kumar S. Molecular Evolutionary Genetics Analysis (MEGA) Software Version. Mol Biol Evol, 2007, 24: 1596–1599
[17]Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J, 1994, 6: 271–282
[18]Singh K, Foley R C, Onate-Sanchez L. Transcription factors in plant defense and stress response. Curr Opin Plant Biol, 2002, 5: 430–436
[19]Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K. Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell, 1997, 9: 1859–1868
[20]Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K. An Arabidopsis MYB homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell, 1993, 5: 1529–1539
[21]Kranz H D, Denekamp M, Greco R, Jin H, Leyva A, Meissner R C, Leyva A, Meissner R C, Petroni K, Urzainqui A, Bevan M, Martin C, Smeekens S, Tonelli C, Paz-Ares J, Weisshaar B. Towards functional characterization of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant J, 1998, 16: 263–276
[22]Jung C, Seo J S, Han S W, Koo Y J, Kim C H, Song S I, Nahm B H, Choi Y D, Cheong J J. Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol, 2008, 146: 623–635
[23]Kirik V, Kolle K, Misera S, Baumlein H. Two novel MYB homologues with changed expression in late embryogenesis-defective Arabidopsis mutants. Plant J, 1998, 13: 729–742
[24]Fowler S, Thomashow M F. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell, 2002, 14: 1675–1690
[25]Yoshiba Y, Klyosue T, Katagiri T, Ueda H, Mizoguchi T, Yamaguchi-Shinozaki K, Wada K, Harada Y, Shinozaki K. Correlation between the induction of a gene for Δ1-pyrroline-5-carboxylate synthase and the accumulation of praline in Arabidopsis thaliana under osmotic stress. Plant J, 1995, 7: 751–760
[26]Martinez C A, Maestri M, Lani E. In vitro salt tolerance and proline accumulation in Andean potato (Solanum spp.) differing in frost tolerance. Plant Sci, 1995, 116: 177–184
[27]Reyes D, Morsy B, Gibbons J. A snapshot of the low temperature stress transcriptome of developing rice seedlings (Oryza sativa L.) via ESTs from subtracted cDNA library. Genetics, 2003, 107: 1071–1082
[28]Breton G, Danyluk J, Charron J B, Sarhan F. Expression profiling and bioinformatic analysis of a novel stress-regulated multispanning transmembrane protein family from cereals and Arabidopsis. Plant Physiol, 2003, 132: 64–74
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!