欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (05): 868-875.doi: 10.3724/SP.J.1006.2011.00868

• 耕作栽培·生理生化 • 上一篇    下一篇

基于株型的水稻冠层光合生产模拟

李艳大1,2,朱相成1,汤亮1,曹卫星1,朱艳1,*   

  1. 1 南京农业大学国家信息农业工程技术中心/江苏省信息农业高技术研究重点实验室,江苏南京 210095;2 江西省农业科学院农业工程研究所,江西南昌 330200
  • 收稿日期:2010-10-25 修回日期:2011-03-08 出版日期:2011-05-12 网络出版日期:2011-03-24
  • 通讯作者: 朱艳, E-mail: yanzhu@njau.edu.cn; Tel: 025-84396565
  • 基金资助:

    本研究由教育部新世纪优秀人才支持计划项目(NCET-08-0797), 国家重点基础研究发展计划项目(2009CB118608)和江苏省自然科学基金项目(BK2009307)资助。

Simulation of Canopy Photosynthetic Production Based on Plant Type in Rice

LI Yan-Da1,2, ZHU Xiang-Cheng1,TANG Liang1,CAO Wei-Xing1,ZHU Yan1,*   

  1. 1 Jiangsu Key Laboratory for Information Agriculture, National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China; 2 Institute of Agricultural Engineering, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
  • Received:2010-10-25 Revised:2011-03-08 Published:2011-05-12 Published online:2011-03-24
  • Contact: 朱艳, E-mail: yanzhu@njau.edu.cn; Tel: 025-84396565

摘要: 利用基于冠层光分布的光合作用模型,以紧凑型和松散型2个不同株型水稻冠层为对象,通过设计不同的模型输入参数组合,定量分析了不同株型水稻冠层直接辐射消光系数的日变化特征、正午时刻直接辐射在冠层内的垂直分布特征、冠层内光合作用速率的垂直分布特征、不同辐射强度下冠层光合作用速率随叶面积指数的变化特征及其日变化等。结果表明,紧凑型的增产潜力依赖于较大的叶面积指数、叶片光合效能、太阳高度角和太阳辐射强度等。研究结果为水稻高产栽培及理想株型的优化设计提供了支撑。

关键词: 水稻, 株型, 消光系数, 直接辐射, 光合作用速率, 分布特征

Abstract: By using canopy-light-distribution-based photosynthetic model, and designing various combinations of model input parameters for compact and loose plant types of rice, quantitative analyses were made on the diurnal variation in extinction coefficient of canopy direct radiation with different plant types, the vertical distribution characteristics of direct radiation at noon and of photosynthetic rate within canopy, the characteristics of canopy photosynthetic rate with the changed leaf area index (LAI) under different radiant intensities, as well as the diurnal variation of canopy photosynthetic rate under different radiant intensities. The results showed that the high yield potential of compact plant type in rice relied on higher LAI, leaf photosynthetic efficiency, solar altitude and the intensity of solar radiation. These results would provide a support on cultivation for high yield and optimal design of plant type in rice crop.

Key words: Rice (Oryza sativa L.), Plant type, Extinction coefficient, Direct radiation, Photosynthetic rate, Distribution characteristics

[1]Maddonni G A, Otegui M E, Cirilo A G. Plant population density, row spacing and hybrid effects on maize canopy architecture and light attenuation. Field Crops Res, 2001, 71: 183–193
[2]Hirose T. Development of the Monsi–Saeki theory on canopy structure and function. Ann Bot, 2005, 95: 483–494
[3]Zheng B Y, Shi L J, Ma Y T, Deng Q Y, Li B G, Guo Y. Comparison of architecture among different cultivars of hybrid rice using a spatial light model based on 3-D digitizing. Funct Plant Biol, 2008, 35: 900–910
[4]Liu J-F(刘建丰), Yuan L-P(袁隆平), Deng Q-Y(邓启云), Chen L-Y(陈立云), Cai Y-D(蔡义东). A study on characteristics of photosynthesis in super high-yield hybrid rice. Sci Agric Sin (中国农业科学), 2005, 38(2): 258–264 (in Chinese with English abstract)
[5]Xu Z-J(徐正进), Chen W-F(陈温福), Zhang W-Z(张文忠), Ma D-R(马殿荣), Xu H(徐海). A preliminary analysis on difference of nadir reflectance of canopy and its affecting factors in different rice varieties. Sci Agric Sin (中国农业科学), 2008, 41(9): 2868–2872 (in Chinese with English abstract)
[6]Chen S G, Shao B Y, Impens I, Ceulemans R. Effects of plant canopy structure on light interception and photosynthesis. J Quant Spectrosc Radiat Transfer, 1994, 52: 115–123
[7]Reta-Sanchez D G, Fowler J L. Canopy light environment and yield of narrow-row cotton as affected by canopy architecture. Agron J, 2002, 94: 1317–1323
[8]Peng S B, Khush G S, Virk P, Tang Q Y, Zou Y B. Progress in ideotype breeding to increase rice yield potential. Field Crops Res, 2008, 108: 32–38
[9]Lü L-H(吕丽华), Zhao M(赵明), Zhao J-R(赵久然), Tao H-B(陶洪斌), Wang P(王璞). Canopy structure and photosynthesis of summer maize under different nitrogen fertilizer application rates. Sci Agric Sin (中国农业科学), 2008, 41(9): 2624–2632 (in Chinese with English abstract)
[10]Yu Q(于强), Wang T-D(王天铎), Sun S-F(孙菽芬), Ren B-H(任保华). A mathematical study on crop architecture and canopy photosynthesis. II. Numerical study. Acta Agron Sin (作物学报), 1998, 24(3): 272–279 (in Chinese with English abstract)
[11]Stewart D W, Costa C, Dwyer L M, Smith D L, Hamilton R L, Ma B L. Canopy structure, light interception, and photosynthesis in maize. Agron J, 2003, 95: 1465–1474
[12]Gao L-Z(高亮之), Jin Z-Q(金之庆), Zhang G-S(张更生), Shi C-L(石春林), Ge D-K(葛道阔). A numerical model to simulate the incident radiation and photosynthate for rice canopies with optimum plant type. Jiangsu J Agric Sci (江苏农业学报), 2000, 16(1): 1–9 (in Chinese with English abstract)
[13]Hu N(胡凝), L? C-G(吕川根), Yao K-M(姚克敏), Zou J-S(邹江石). Simulation on photosynthetically active radiation distributing in rice canopy with rolled leaves and its optimum leaf rolling index. Chinese J Rice Sci (中国水稻科学), 2008, 22(6): 617–624 (in Chinese with English abstract)
[14]Li Y-D(李艳大). Simulation Study on Plant Type and Light Utilization in Rice. PhD Dissertation of Nanjing Agricultural University, 2010 (in Chinese with English abstract)
[15]Meng Y-L(孟亚利), Cao W-X(曹卫星), Liu X-W(柳新伟), Zhou Z-G(周治国), Pan J(潘洁). Dynamic simulation on photosynthetic production and dry matter accumulation in rice. J Biomath (生物数学学报), 2004, 19(2): 205–212 (in Chinese with English abstract)
[16]Zuo D-K(左大康), Zhou Y-H(周允华), Xiang Y-Q(项月琴). Studies on Radiation in the Epigeosphere (地球表层辐射研究). Beijing: Science Press, 1991. pp 202–208 (in Chinese)
[17]Zhang H-X(张厚瑄). Conception and measure method of crop population structure. Chin J Agrometeorol (中国农业气象), 1984, 3: 51–55 (in Chinese)
[18]Cao W-X(曹卫星). Digital Farming Technology (数字农作技术). Beijing: Science Press, 2008. pp 185–191 (in Chinese)
[19]Goudriaan J. A simple and fast numerical method for the computation of daily totals of crop photosynthesis. Agric For Meteor, 1986, 38: 249–254
[20]Meng Y-L(孟亚利). A Process-Based Simulation Model for Rice Growth. PhD Dissertation of Nanjing Agricultural University, 2002 (in Chinese with English abstract)
[21]Zhou Y-H(周允华), Xiang Y-Q(项月琴), Shan F-Z(单福芝). A climatological study on the photosynthetically active radiation. Acta Meteorol Sin (气象学报), 1984, 42(4): 387–397 (in Chinese with English abstract)
[22]Yu Q(于强), Wang T-D(王天铎), Liu J-D(刘建栋), Sun S-F(孙菽芬). A mathematical study on crop architecture and canopy photosynthesis. I. Model. Acta Agron Sin (作物学报), 1998, 24(1): 7–15 (in Chinese with English abstract)
[23]Zuo D-K(左大康), Zhou Y-H(周允华), Xiang Y-Q(项月琴). Studies on Radiation in the Epigeosphere (地球表层辐射研究). Beijing: Science Press, 1991. pp 350–358 (in Chinese)
[24]Yu Q(于强). Simulation Model of Crop Growth and the Numerical Study of Climatic Productivity. Ph.D. Dissertation of Nanjing University, 1994 (in Chinese with English abstract)
[25]de Wit C T, Goudriaan J. Simulation of Ecological Processes. Wageningen: Centre for Agricultural Publishing and Documentation, 1978. pp 168–175
[26]Cao W-X(曹卫星). Digital Farming Technology (数字农作技术). Beijing: Science Press, 2008. pp 99-101 (in Chinese)
[27]Wang W M, Li Z L, Su H B. Comparison of leaf angle distribution functions: effects on extinction coefficient and fraction of sunlit foliage. Agric For Meteor, 2007, 143: 106–122
[28]Wang X-P(王锡平), Li B-G(李保国), Guo Y(郭炎), Zhai Z-X(翟志席). Measurement and analysis of the 3D spatial distribution of photosynthetically active radiation in maize canopy. Acta Agron Sin (作物学报), 2004, 30(6): 568–576 (in Chinese with English abstract)
[29]Zhang Y-M(张艳敏), Li J-S(李晋生), Qian W-P(钱维朴), Huang D-M(黄德明). Canopy structure and light distribution in winter wheat. Acta Agric Boreali-Sin (华北农学报), 1996, 11(1): 54–58 (in Chinese with English abstract)
[30]Ruiz R A, Bertero H D. Light interception and radiation use efficiency in temperate quinoa (Chenopodium quinoa Willd.) cultivars. Eur J Agron, 2008, 29: 144–152
[31]Yan J-Y(颜景义) , Zheng Y-F(郑有飞), Zhang H-Z(张海珍), Wan C-J(万长建). Population structure and light utilization analysis in wheat. Chin J Agrometeorol (中国农业气象), 1995, 16(6): 5–9 (in Chinese)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!