高产夏玉米,种植密度,产量,干物质积累与分配," /> 高产夏玉米,种植密度,产量,干物质积累与分配,"/> 种植密度对高产夏玉米登海661产量及干物质积累与分配的影响
欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (07): 1301-1307.doi: 10.3724/SP.J.1006.2011.01301

• 研究简报 • 上一篇    下一篇

种植密度对高产夏玉米登海661产量及干物质积累与分配的影响

刘伟1,张吉旺1,*,吕鹏1,杨今胜2,刘鹏1,董树亭1,李登海2,孙庆泉1   

  1. 1山东农业大学农学院/作物生物学国家重点实验室,山东泰安 271018;2山东登海种业股份有限公司,山东莱州 261448
  • 收稿日期:2010-11-15 修回日期:2011-03-26 出版日期:2011-07-12 网络出版日期:2011-05-11
  • 通讯作者: 张吉旺, E-mail: jwzhang@sdau.edu.cn, Tel: 0538-8245838
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2009CB118602),国家公益性行业(农业)科研专项(200903003)和山东省玉米良种工程项目(鲁农良种2010-6)资助。

Effect of Plant Density on Grain Yield Dry Matter Accumulation and Partitioning in Summer Maize Cultivar Denghai 661

LIU Wei1,ZHANG Ji-Wang1,*,LÜ Peng1,YANG Jin-Sheng2,LIU Peng1,DONG Shu-Ting1,LI Deng-Hai2,SUN Qing-Quan1   

  1. 1山东农业大学农学院/作物生物学国家重点实验室,山东泰安 271018;2山东登海种业股份有限公司,山东莱州 261448
  • Received:2010-11-15 Revised:2011-03-26 Published:2011-07-12 Published online:2011-05-11
  • Contact: 张吉旺, E-mail: jwzhang@sdau.edu.cn, Tel: 0538-8245838

摘要: 选用玉米品种登海661和农大108,设置不同种植密度,研究高产条件下种植密度对夏玉米产量及干物质积累与分配的影响。结果表明,种植密度增加后群体产量和干物质积累量显著增加,单株产量和干物质积累量反之。登海661在9万株 hm-2时充分发挥了生长潜能,可获高产。随种植密度的增加,开花期和乳熟期茎秆干物质积累量的降幅大于叶片,主要影响茎秆干物质积累;成熟期茎秆干物质积累量降幅小于叶片,主要影响叶片干物质积累。乳熟期以后茎秆和叶片的干物质输出率均随种植密度增加显著减少,茎秆的贡献率随种植密度增加显著减少,而叶片的贡献率,随种植密度增加显著增加。密度3~9万株 hm-2时茎秆对籽粒干物质积累量贡献率大,10.5~13.5万株 hm-2时叶片对籽粒库建成影响大。

关键词:

font-family: 宋体, mso-ascii-font-family: 'Times New Roman', 高产夏玉米')">mso-hansi-font-family: 'Times New Roman'">高产夏玉米, 种植密度, 产量, 干物质积累与分配')">mso-fareast-font-family: 仿宋_GB2312">

Abstract: The effects of plant density on the dry matter accumulation and distribution were studied under high yield condition hoping to provide a scientific basis for the cultivation and breeding of high-yielding maize, using summer maize cultivar Denghai 661 and Nongda 108 were used as the experimental material and planted with different planting densities. The results showed that, population grain yield and dry matter accumulation increased significantly with the increasing of plant density, while the per plant were decreased.Denghai 661 had a high growth potential at 90 000 plant ha-1, whichwas the optimum plant population for the maximal grain yield. At anthesis and milking stages, the decreaserateof stem dry matter accumulation was greater than that of leafwith increasing plant density,which was on the contrary at maturity stage. So the effects of plant density on stem dry matter accumulation were significantly stronger than that before milking stage, which was on the contrary after milking stage. After milking stage,the transportation efficiency of both stem and leaf reduced significantly with the increasing of plant density, the contribution rate of stem also reduced significantly, leaf increased. The stem dry mattertransportation contributed more than leaf’s to the grain yield under the density from 30 000 to 90 000 plant ha-1, butthe leaf dry matter transportationcontributed more than stems to the grain yield under the density from 105 000 to 135 000 plant ha-1.

Key words: High-yield summer maize, Plant density, Grain yield, Dry matter accumulation and partitioning

[1]Duvick D N, Cassman K G. Post-green revolution trends in yield potential of temperate maize in the north-central United States. Crop Sci, 1999, 39: 1622–1630
[2]Dai J-R(戴景瑞). The Review and Prospects of Maize Genetics and Breeding. In: Prospects of Maize Genetics an Breeding for the 21th Century-Paper Collection of International Maize Genetics an Breeding Symposium (玉米遗传育种国际学术讨论会文集). Changchun: China Agricultural Science and Technology Press, 2000. pp 1–7 (in Chinese)
[3]Duan M-X(段民孝). Some advice on corn breeding obtained from the elite varieties of Nongda 108 and Zhengdan 958. J Maize Sci (玉米科学), 2005, 13(4): 49–52 (in Chinese with English abstract)
[4]Sun S-X(孙世贤). Brief situation of high yield maize competition of USA in 2002. J Maize Sci (玉米科学), 2003, 11(3): 102 (in Chinese with English abstract)
[5]Liu Z-Q(刘志全), Lu L-P(路立平), Shen H-B(沈海波), Gao M(高明), Wang Z-G(王志刚). Introduction on America corn yield contest. J Maize Sci (玉米科学), 2004, 12(4): 110–113 (in Chinese with English abstract)
[6]Wang C-T(王崇桃), Li S-K(李少昆), Han B-T(韩伯棠). Approaches to high-yielding and yield potential exploration in corn. Sci Technol Rev (科技导报), 2006, 24(4): 8–11 (in Chinese with English abstract)
[7]Hu C-H(胡昌浩). Corn Cultivation Physiology (玉米栽培生理). Beijing: China Agriculture Press, 1995. p 1 (in Chinese)
[8]Tollenaar M, Daynard T B. Effect of source-sink ratio on dry matter accumulation and leaf senescence of maize. Can J Plant Sci, 1987, 62: 855–860
[9]Karlen D L, L’flannery R, Sadler E J. Dry matter nitrogen, phosphorus and potassium accumulation rate by corn on Norfolk loamy Sand. Agron J, 1987, 79: 649–656
[10]Huang Z-H(黄智鸿), Shen L(申林), Su G(孙刚), Cao Y(曹洋), Bao Y(包岩), Liang X-H(梁煊赫), Wu C-Q(吴春胜), Sun F-N(孙丰年). Study on leaf area and dry matter accumulation and distribution in super high-yield maize. J Anhui Agric Sci (安徽农业科学), 2007, 35(8): 2227–2228 (in Chinese with English abstract)
[11]Zheng P-R(郑丕尧). Introduction to Crop Physiology (作物生理学导论). Beijing: Beijing Agricultural University Press, 1992 (in Chinese)
[12]Saidou A, Janssen B H, Temminghoff E J M. Effects of soil properties,mulch and NPK fertilizer on maize yield sand nutrient budgets on ferralitic soils in southern Benin. Agric Ecosyst Environ, 2003, 100: 265–273
[13]Chen G-P(陈国平), Yang G-H(杨国航), Zhao M(赵明), Wang L-C(王立春), Wang Y-D(王友德), Xue J-Q(薛吉全), Gao J-L(高聚林). Studies on maize small area super-high yield trails and cultivation technique. J Maize Sci (玉米科学), 2008, 16(4): 1–4 (in Chinese with English abstract)
[14]Huang Z-H(黄智鸿), Wang S-Y(王思远), Bao Y(包岩), Liang X-H(梁煊赫), Sun G(孙刚), Shen L(申林), Cao Y(曹洋), Wu C-S(吴春胜).Studies on dry matter accumulation and distributive characteristic in super high-yield maize. J Maize Sci (玉米科学), 2007, 15(3): 95–98 (in Chinese with English abstract)
[15]Ma Y-H(马赟花), Xue J-Q(薛吉全), Zhang R-H(张仁和), Zhang L-C(张林春), Hao Y(郝扬), Sun J(孙娟). Relationship between dry matter accumulation and distribution to yield of different maize cultivars. Guangdong Agric Sci (广东农业科学), 2010, (3): 36–40 (in Chinese with English abstract)
[16]Lian Y-X(连艳鲜), Li C-H(李潮海), Zhou S-M(周苏玫). Maize dry matter yield production and distribution characteristic. J Henan Agric Sci (河南农业科学), 2003, (7): 7–9 (in Chinese with English abstract)
[17]Huang Z-X(黄振喜), Wang Y-J(王永军), Wang K-J(王空军), Li D-H(李登海), Zhao M(赵明), Liu J-G(柳京国), Dong S-T(董树亭), Wang H-J(王洪军), Wang J-H(王军海), Yang J-S(杨今胜). Photosynthetic characteristics during grain filling stage of summer maize hybrids with high yield potential of 15000 kg ha-1. Sci Agric Sin (中国农业科学), 2007, 40(9): 1898–1906 (in Chinese with English abstract)
[18]Li J-S(李济生), Dong S-Q(董淑琴). Study of organ up ground dry matter accumulation and partitioning. Beijing Agric Sci (北京农业科学), 1985, (2): 19–21 (in Chinese with English abstract)
[19]Liu W(刘伟), Lü P(吕鹏), Su K(苏凯), Yang J-S(杨今胜), Zhang J-W(张吉旺), Dong S-T(董树亭), Liu P(刘鹏), Sun Q-Q(孙庆泉). Effects of planting density on the grain yield and source-sink characteristics of summer maize. Chin J Appl Ecol (应用生态学报), 2010, 21(7): 1737–1743 (in Chinese with English abstract)
[20]Liu K-L(刘克礼), Liu J-H(刘景辉). A study on the regularity of accumulation, distribution and translation of dry matter in spring maize. J Inner Mongola Inst Agric Anim Husbandry (内蒙古农牧学院学报), 1994, 15(1): 1–9 (in Chinese with English abstract)
[21]Ma G-S(马国胜), Xue J-Q(薛吉全), Lu H-D(路海东), Zhang R-H(张仁和). Study on high yield and benefit fertilization application technique of Shandan 8806. J Maize Sci (玉米科学), 2006, 14(4): 134–137 (in Chinese with English abstract)
[22]Wang J-J(王进军), Ke F-L(柯福来), Bai O(白鸥), Huang R-D(黄瑞冬). Effect of dry weight accumulation and yields of maize under different nitrogen application. J Shenyang Agric Univ (沈阳农业大学学报), 2008, 39(4): 392–395 (in Chinese with English abstract)
[23]Han J-L(韩金玲), Li Y-S(李彦生), Yang Q(杨晴), Zhou Y-F(周印富), Wang W-P(王文颇), Li J-S(李婧实), Zhang G-Q(张国庆). The effect of plant density on regularity of accumulation, distribution and transfer of dry matter on spring maize. J Maize Sci (玉米科学), 2008, 16(5): 115–119 (in Chinese with English abstract)
[24]Zhao M(赵明), Li J-G(李建国), Zhang B(张宾), Dong Z-Q(董志强), Wang M-Y(王美云). The compensatory mechanism in exploring crop production potential. Acta Agron Sin (作物学报), 2006, 32(10): 1566–1573 (in Chinese with English abstract)
[25]Guo Q-F(郭庆法), Wang Q-C(王庆成), Wang L-M(汪黎明). Cultivation of Maize in China (中国玉米栽培学). Shanghai: Shanghai Scientific and Technical Publishers, 2004 (in Chinese)
[26]Xue J-Q (薛吉全), Liang Z-S(梁宗锁), Ma G-S(马国胜), Lu H-D(路海东), Ren J-H(任建宏). Population physiological indices on density-tolerance of maize in different plant type. Chin J Appl Ecol (应用生态学报), 2002, 13(1): 55–59 (in Chinese with English abstract)
[27]Dong H-Z(董合忠), Niu Y-H(牛曰华), Li W-J(李维江), Tang W(唐薇), Li Z-H(李振怀), Zhang D-M(张冬梅). Regulation effects of various training modes on source-sink relation of cotton. Chin J Appl Ecol (应用生态学报), 2008, 19(4): 819–824 (in Chinese with English abstract)
[28]Cai J-Z(蔡建中), Wang Y-L(王余龙), He J-S(何杰升). The relationship between the yield component and the dry matter-production and their effects on the grain yield. J Jiangsu Agric Coll (江苏农业科学), 1989, 10(4): 9–12 (in Chinese with English abstract)
[29]Djisbar A. Heterosis for embryo size and source and sink components of maize. Crop Sci, 1989, 29: 985–991
[30]Jones R J, Simmons S R. Effect of altered source sink ratio on growth of maize kernels. Crop Sci, 1983, 23: 129–134
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[12] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[13] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[14] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[15] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!