欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (04): 648-656.doi: 10.3724/SP.J.1006.2012.00648

• 耕作栽培·生理生化 • 上一篇    下一篇

水稻高产氮高效型品种的根系形态生理特征

李敏1,2,张洪程1,*,杨雄1,葛梦婕1,马群1,魏海燕1,戴其根1,霍中洋1,许轲1,曹利强1,吴浩1   

  1. 1扬州大学农业部长江流域稻作技术创新中心 / 江苏省作物遗传生理重点实验室,江苏扬州225009;2贵州省水稻研究所,贵州贵阳550006
  • 收稿日期:2011-10-22 修回日期:2012-01-19 出版日期:2012-04-12 网络出版日期:2012-02-13
  • 通讯作者: 张洪程, E-mail: hczhang@yzu.edu.cn; Tel: 0514-87979220
  • 基金资助:

    本研究由国家自然科学基金项目(30971732和31101102), 国家粮食丰产科技工程项目(2011BAD16B03), 贵州省水稻育种、栽培与产业化创新能力建设项目(黔科合 院所创能 合[2011]4003)及贵州山区水稻科研基础条件建设项目(黔科条中补地[2011]4005)资助。

Root Morphological and Physiological Characteristics of Rice Cultivars with High Yield and High Nitrogen Use Efficiency

LI Min1,2, ZHANG Hong-Cheng1,*, YANG Xiong1, GE Meng-Jie1, MA Qun1, WEI Hai-Yan1, DAI Qi-Gen1, HUO Zhong-Yang1, XU Ke1, CAO Li-Qiang1,WU Hao1   

  1. 1 Innovation Center of Rice Technology in Yangtze Rice Valley, Ministry of Agriculture / Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China; 2 Rice Research Institute of Guizhou Province, Guiyang 550006, China
  • Received:2011-10-22 Revised:2012-01-19 Published:2012-04-12 Published online:2012-02-13
  • Contact: 张洪程, E-mail: hczhang@yzu.edu.cn; Tel: 0514-87979220

摘要: 选用低产氮低效型、高产氮中效型和高产氮高效型具有代表性的6个粳稻品种,在各自最适氮素水平下,研究了根系形态生理特征的差异。结果表明,较之低产类型品种,高产类型品种在根干重、根体积、根系总吸收表面积、活跃吸收表面积、根系α-NA氧化量及根系伤流强度等方面在各个生育时期均存在着明显的优势,说明生产力的提高伴随着根系形态特征的改善和生理活性的加强。同为高生产力类型品种,因氮利用率的差异根系形态生理特征表现不同。较之高产氮中效类型,高产氮高效型水稻的群体根干重、群体根体积、群体根系伤流强度和根系总吸收表面积均有所降低,而单茎根干重、单茎根体积、单茎根系伤流强度、活跃吸收表面积比及根系α-NA氧化量却有显著或极显著提高。表明适当控制高生产力水稻的群体生长量,促进群体和个体协调发展,着力提高抽穗后单茎根系质量,将是水稻高产和氮高效协调统一的可靠途径。

关键词: 水稻, 高产高效, 根系形态, 根系生理

Abstract: The difference of root morphological and physiological characteristics of low-yielding and low N-efficiency, high-yielding and medium N-efficiency, high-yielding and high N-efficiency rice cultivars was investigated using six representative japonica varieties under their optimum N levels, respectively. The results showed that the high-yielding genotypes showed distinct advantages over the low-yielding ones in root dry weight, root volume, total and active absorbing surface areas of root system, root oxidation ability of α-NA and root bleeding intensity at each growth stage, indicating that the increase of productivity was accompanied by the improvement of root morphological traits and the enhancement of root physiological activities. Cultivars with different N-efficiency displayed diverse root morphological and physiological characteristics, even though they were all on a high-yielding level. Comparing with medium N-efficiency genotypes, the high N-efficiency ones showed lower root dry weight, root volume, root bleeding intensity and root total absorbing surface area for populations, but for single plants, the root dry weight, root volume, root bleeding intensity, active absorbing surface area and α-NA oxidation amount were superior in a significant or extremely significant degree. The results above suggest that the coordination of high-yielding with high N-efficiency could be achieved through controlling population growth properly, facilitating the concordant development of plant population and individuals, and endeavoring to improve the single stem root quality after heading.

Key words: Rice, High-yielding and high N-efficiency, Root morphological characteristics, Root physiological characteristics

[1]FAO. Statistical Databases, Food and Agriculture Organization (FAO) of the United Nations, 2004. http://www.fao.org/

[2]Li H(李华), Xu C-Q(徐长青), Li S-F(李世峰), Qian Z-H(钱宗华). Effects of different nitrogen management on yield and nitrogen utilization of machine-transplanted rice. Guizhou Agric Sci (贵州农业科学), 2008, 36(5): 39–41 (in Chinese with English abstract)

[3]Peng S B, Buresh R J, Huang J L, Yang J C, Zou Y B, Zhong X H, Wang G H, Zhang F S. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Res, 2006, 96: 37–47

[4]Zhang H, Xue Y G, Wang Z Q. Morphological and physiological traits of roots and their relationships with shoot growth in super rice. Field Crops Res, 2009, 113: 31–40

[5]Zhu D-F(朱德峰), Lin X-Q(林贤青), Cao W-X(曹卫星). Characteristics of root distribution of super high yielding rice varieties. J Nanjing Agric Univ (南京农业大学学报), 2000, 23(4): 5–8 (in Chinese with English abstract)

[6]Zhu D-F(朱德峰), Lin X-Q(林贤青), Cao W-X(曹卫星). Effects of deep roots on growth and yield in two rice varieties. Sci Agric Sin (中国农业科学), 2001, 34(4): 429–432 (in Chinese with English abstract)

[7]Wei H-Y(魏海燕), Zhang H-C(张洪程), Zhang S-F(张胜飞), Hang J(杭杰), Dai Q-G(戴其根), Huo Z-Y(霍中洋), Xu K(许轲), Ma Q(马群), Zhang Q(张庆), Liu Y-Y(刘艳阳). Root morphological and physiological characteristics in rice genotypes with different N use efficiencies. Acta Agron Sin (作物学报), 2008, 34(3): 429–436 (in Chinese with English abstract)

[8]Fan J-B(樊剑波), Shen Q-R(沈其荣), Tan J-Z(谭炯壮), Ye L-T(叶利庭), Song W-J(宋文静), Zhang Y-L(张亚丽). Difference of root physiological and ecological indices in rice cultivars with different N use efficiency. Acta Ecol Sin (生态学报), 2009, 29(6): 3052–3058 (in Chinese with English abstract)

[9]Cheng J-F(程建峰), Dai T-B(戴廷波), Jing Q(荆奇), Jiang D(姜东), Pan X-Y(潘晓云), Cao W-X(曹卫星). Root morphological and physiological characteristics in relation to nitrogen absorption efficiency in different rice genotypes. Acta Pedol Sin(土壤学报), 2007, 44(2): 266–272 (in Chinese with English abstract)

[10]Dong G-C(董桂春), Wang Y-L(王余龙), Wu H(吴华), Zhou X-D(周小冬), Shan Y-H(单玉华), Wang J-G(王坚刚), Cai H-R(蔡惠荣), Cai J-Z(蔡建中). Varietal differences in response of main root traits to nitrogen application time in rice. Acta Agron Sin (作物学报), 2003, 29(6): 871–877 (in Chinese with English abstract)

[11]Shi Z-J(史正军), Fan X-L(樊小林), Klaus D, Sattemacher B. Effect of localized nitrogen supply on root morphology in rice and its mechanism. Chin J Rice Sci (中国水稻科学), 2005, 19(2): 147–152 (in Chinese with English abstract)

[12]Ma Q(马群), Yang X(杨雄), Li M(李敏), Li G-Y(李国业), Zhang H-C(张洪程), Dai Q-G(戴其根), Huo Z -Y(霍中洋), Xu K(许轲), Wei H-Y(魏海燕), Gao H(高辉). Studies on the characteristics of dry matter production and accumulation of rice varieties with different productivity levels. Sci Agric Sin (中国农业科学), 2011, 44(20): 4159–4169 (in Chinese with English abstract)

[13]Ling Q-H(凌启鸿). Quality of Crop Population (作物群体质量). Shanghai: Shanghai Scientific and Technical Publishers, 2000. pp 42–107 (in Chinese)

[14]Liu W-Z(刘文兆), Li Y-Y(李秧秧). Effect of crop root-cutting on grain yield and water use efficiency: a review. Acta Bot Boreali-Occident Sin (西北植物学报), 2003, 23(8): 1320–1324 (in Chinese with English abstract)

[15]Harada J, Kang S, Yamazaki K. Root system development of japonica-indica hybrid rice cultivars. Jpn J Crop Sci, 1994, 63: 423–429

[16]Kang S, Morita S, Yamazaki K. Root growth and distribution in some japonica-indica hybrid and japonica type rice cultivars under field conditions. Jpn J Crop Sci, 1994, 63: 118–124

[17]Samejima H, Kondo M, Ito O, Nozoe T, Shinano T, Osaki M. Characterization of root systems with respect to morphological traits and nitrogen-absorbing ability in the new plant type of tropical rice lines. J Plant Nutr, 2005, 28: 835–850

[18]Yang J-C(杨建昌). Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization. Sci Agric Sin (中国农业科学), 2011, 44(1): 36–46 (in Chinese with English abstract)

[19]Pan X-H(潘晓华), Wang Y-R(王永锐), Fu J-R(傅家瑞). Advance in the study on the growth-physiology in rice of root system (Oryza sativa). Chin Bull Bot (植物学通报), 1996, 13(2): 13–20 (in Chinese with English abstract)

[20]Sun J-W(孙静文), Chen W-F(陈温福), Zang C-M(臧春明), Wang Y-R(王彦荣), Wu S-Q(吴淑琴). Advances of research on rice root systems. J Shenyang Agric Univ (沈阳农业大学学报), 2002, 33(6): 466–470 (in Chinese with English abstract)

[21]Zhang C-L(张成良), Jiang W(姜伟), Xiao Y-Q(肖叶青), Wu W-C(邬文昌), Chen D-Z(陈大洲), Huang Y-J(黄英金). Status and prospects of research on rice root systems. Acta Agric Jiangxi (江西农业学报), 2006, 18(5): 23–27 (in Chinese with English abstract)

[22]Passioura J B. Roots and drought resistance. Agric Water Manage, 1983, 7: 265–280

[23]Cai K-Z(蔡昆争), Luo S-M(骆世明), Duan S-S(段舜山). The response of the rice root system to nitrogen conditions under-root confinement. Acta Ecol Sin (生态学报), 2003, 23(6): 1109–1116 (in Chinese with English abstract)

[24]Wang Q(汪强), Fan X-L(樊小林), Liu F(刘芳), Klaus D, Sattemacher B. Effect of root cutting on rice yield by shifting normal paddy to upland cultivation. Chin J Rice Sci (中国水稻科学), 2004, 18(5): 437–442 (in Chinese with English abstract)

[25]Liu T-J(刘桃菊), Qi C-H(戚昌瀚), Tang J-J(唐建军). Studies on relationship between the character parameters of root and yield formation in rice. Sci Agric Sin (中国农业科学), 2002, 35(11): 1416–1419 (in Chinese with English abstract)

[26]Wei H-Y(魏海燕), Zhang H-C(张洪程), Dai Q-G(戴其根), Huo Z-Y(霍中洋), Xu K(许轲), Hang J(杭杰), Ma Q(马群), Zhang S-F(张胜飞), Zhang Q(张庆), Liu Y-Y(刘艳阳). Characteristics of matter production and accumulation in rice genotypes with different N use efficiency. Acta Agron Sin (作物学报), 2007, 33(11): 1802–1809 (in Chinese with English abstract)

[27]Cheng J-F(程建峰), Dai T-B(戴廷波), Cao W-X(曹卫星), Jiang D(姜东), Liu Y-B(刘宜柏). Variations of nitrogen nutrition efficiency in different rice germplasm types. Plant Nutr Fert Sci (植物营养与肥料学报), 2007, 13(3): 175–183 (in Chinese with English abstract)

[28]Shan Y-H(单玉华), Wang Y-L(王余龙), Yamamoto Y. The differences of nitrogen uptake and utilization in different types of rice. J Yangzhou Univ (Nat Sci Edn) (扬州大学学报?自然科学版), 2001, 4(3): 21–26 (in Chinese with English abstract)

[29]Yin C-Y(殷春渊), Wei H-Y(魏海燕), Zhang Q(张庆), Dai Q-G(戴其根), Huo Z-Y(霍中洋), Xu K(许轲), Zhang S-F(张胜飞), Hang J(杭杰), Ma Q(马群). Differences and correlations in grain yield, N uptake and utilization between medium maturing indica and japonica rice under different N fertilizer levels. Acta Agron Sin (作物学报), 2009, 35(2): 348–355 (in Chinese with English abstract)

[30]Mae T, Inaba A, Kaneta Y, Masaki S, Sasaki M, Aizawa M, Okawa S. A large-grain rice cultivar, Akita 63, exhibits high yields with high physiological N-use efficiency. Field Crops Res, 2006, 97: 227–237

[31]Ma Q(马群). Studies on the Highest Population Productivity of N Fertilizer and Its Growth Factors of Rice Cultivars. PhD Dissertation of Yangzhou University, 2011 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!