欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (04): 707-716.doi: 10.3724/SP.J.1006.2012.00707

• 耕作栽培·生理生化 • 上一篇    下一篇

机插粳稻氮磷钾吸收分配特征研究

于林惠1,2,李刚华1,徐晶晶1,杨娟娟1,王绍华1,刘正辉1,王强盛1,凌启鸿1,丁艳锋1,*   

  1. 1南京农业大学 / 农业部南方作物生理生态重点开放实验室, 江苏南京210095; 2江苏省农业机械管理局, 江苏南京210024
  • 收稿日期:2011-05-10 修回日期:2011-12-19 出版日期:2012-04-12 网络出版日期:2012-02-13
  • 通讯作者: 丁艳锋, E-mail: dingyf@njau.edu.cn
  • 基金资助:

    本研究由国家星火计划项目(2010GA690010), 江苏农业自主创新项目(CX11, 2011), 引进国际先进农业科学技术计划(948计划)重点项目(2011-G18)资助。

Characteristics of Nitrogen, Phosphorus, and Potassium’s Uptake and Partitioning in Mechanical Transplanting Japonica Rice

YU Lin-Hui1,2,LI Gang-Hua1,XU Jing-Jing1,Yang Juan-Juan1,WANG Shao-Hua1,LIU Zheng-Hui1,WANG Qiang-Sheng1,LING Qi-Hong1,DING Yan-Feng1,*   

  1. 1Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/Nanjing Agricultural University, Nanjing 210095, Jiangsu; 2 The Bureau of Agricultural Machinery Administration of Jiangsu Province, Nanjing 210024, China
  • Received:2011-05-10 Revised:2011-12-19 Published:2012-04-12 Published online:2012-02-13
  • Contact: 丁艳锋, E-mail: dingyf@njau.edu.cn

摘要: 调查研究2008—2009年江苏武进区漕桥(品种为武香粳9号)和前黄(品种为武运粳7号)等2个大于6.7 hm2机插粳稻高产示范方, 探讨机插粳稻养分吸收分配特征, 并对高产精确定量施肥参数进行定量。结果表明, 高产机插粳稻产量的80%左右来自抽穗后的光合产物; 抽穗后叶片的干物质积累呈表观输出, , 而茎鞘的干物质积累呈表观输入; 抽穗后氮素的转运贡献率也主要来自叶片。机插粳稻对氮的吸收量随产量升高而增加, 增加量主要来自抽穗后; 随着产量提高, 抽穗至成熟期氮积累量和积累比例均上升, 对磷钾的吸收量上升但吸收比例却有下降的趋势; 成熟期氮收获指数在0.51~0.61之间, 磷收获指数在0.75左右, 钾收获指数接近0.20; 高产机插粳稻百千克籽粒需氮量为2.0~2.1 kg, 氮磷钾吸收比例为2∶0.9∶1.4。

关键词: 粳稻, 机插, 氮磷钾, 精确施肥, 参数

Abstract: From 2008 to 2009, 2 more than 6.7 ha high-yield demonstration fields at Caoqiao (using cv. Wuxiangjing 9) and Qianhuang (using cv. Wuyunjing 7) in Wujin County, Jiangsu province, were used to investigate the nutrient uptake and partitionging characteristics of mechanical transplanting rice. The results showed that 80% of grain yield of mechanical transplanting rice came from the dry matter accumulation after heading, dry weight decreased in leaves while increased in stem sheath after heading. Leaves were also the main contributor of nitrogen translocation. Nitrogen uptake of mechanical transplanting rice increased with the yield, and the increased nitrogen uptake mainly originated from the nitrogen accumulation after heading. With the increasing yield, the accumulation and proportion of nitrogen from heading to maturity increased. At the same time, the uptake of P2O5 and K2O increased while the dry weight accumulation ratio reduced. The nitrogen harvest index was between 0.51 and 0.61, the P2O5 harvest index was about 0.75, and the K2O harvest index was close to 0.20. For achieving high yield in mechanical transplanting rice, nitrogen requirement for 100 kg grains should be 2.0–2.1 kg, and the optimum ratio of NPK should be 2.0 : 0.9 : 1.4.

Key words: Japonica, Mechanical transplanting rice, Nitrogen、Phosphorus and Potassium, Parameters of precise and quantitative nutrient application, Index

[1]Zhu D-F(朱德峰), Chen H-Z(陈惠哲). Development of Mechanical-transplanting Rice and food safety. China Rice (中国稻米), 2009, (6): 4-7 (in Chinese)

[2]Zhu D-F(朱德峰), Cheng S-H(程式华), Zhang Y-P(张玉屏), Lin X-Q(林贤青), Chen H-Z(陈惠哲).Analysis of status and constraints of rice production in the world. Sci Agric Sin (中国农业科学), 2010, 43 (3): 474-479 (in Chinese with English abstract)

[3]Jiang L-G(江立庚), Gan X-Q(甘秀芹), Wei S-Q(韦善清), Xu J-Y(徐建云), Cao W-X(曹卫星). Accumulation pattern of dry matter, nitrogen, phosphorus, potassium and silicon in rice genotypes and their relationships. Chin J Appl Ecol (应用生态学报), 2004, 15(2): 226-230 (in Chinese with English abstract)

[4]Yin C-Y(殷春渊), Wei H-Y(魏海燕), Zhang Q(张庆), Dai Q-G(戴其根), Huo Z-Y(霍中洋), Xu K(许轲), Zhang S-F(张胜飞), Hang J(杭杰), Ma Q(马群). Differences and correlations in grain yield, N uptake and utilization between medium-maturing indica and japonica rice under different N fertilizer levels. Acta Agron Sin (作物学报), 2010, 36(4): 655-664 (in Chinese with English abstract)

[5]Sun Y-J(孙永健), Sun Y-Y(孙园园), Li X-Y(李旭毅), Zhang R-P(张荣萍), Guo X(郭翔), Ma J(马均). Effects of water-nitrogen interaction on absorption, translocation and distribution of nitrogen, phosphorus, and potassium in rice. Acta Agron Sin (作物学报), 2010, 36(4): 655-664 (in Chinese with English abstract)

[6]Liu L-J(刘立军), Xue Y-G(薛亚光), Sun X-L(孙小淋), Wang Z-Q(王志琴), Yang J-C(杨建昌). Effects of water management methods on grain yield and fertilizer-nitrogen use efficiency in rice. Chin J Rice Sci (中国水稻科学), 2009, 23(3): 282-288 (in Chinese with English abstract)

[7]He Y-Q(何园球), Li C-L(李成亮), Wang X-X(王兴祥), Xiong Y-S(熊又升), Shen Q-R(沈其荣). Effect of soil moisture content and phosphorus application on phosphourus uptake by rice cultivated in aerobic soil. Acta Pedol Sin (土壤学报), 2005, 42(4): 628-633 (in Chinese with English abstract)

[8]Ao H-J(敖和军), Wang S-H(王淑红), Zou Y-B(邹应斌), Peng S-B(彭少兵), Cheng Z-W(程兆伟), Liu W(刘武), Tang Q-Y(唐启源). Characteristics of nutrient uptake and utilization of super hybrid rice under different fertilizer application rates. Sci Agric Sin (中国农业科学), 2008, 41(10): 3123-3132 (in Chinese with English abstract)

[9]Chen X-H(陈新红), Xu G-W(徐国伟), Wang Z-Q(王志琴), Yang J-C(杨建昌). Effects of water and nitrogen on nitrogen utilization and nutrient uptake of rice at late stage. Agric Res Arid Areas (干旱地区农业研究), 2004, 22(2): 35-41 (in Chinese with English abstract)

[10]Xu M-G(徐明岗), Li D-C(李冬初), Li J-M(李菊梅), Qin D-Z(秦道珠), Yagi K(八木一行), Hosen Y(宝川靖和). Effects of organic manure application combined with chemical fertilizers on nutrients absorption and yield of rice in Hunan of China. Sci Agric Sin (中国农业科学), 2008, 41(10): 3133-3139 (in Chinese with English abstract)

[11]Du Y(杜永), Liu H(刘辉), Yang C(杨成), Wang Z-Q(王志琴), Yang J-C(杨建昌). Characteristics of nutrient absorption in Super-High-Yielding mid-season and late-maturity japonica rice. Acta Agron Sin (作物学报), 2007, 33(2): 208-215 (in Chinese with English abstract)

[12]Chen X-H(陈新红), Liu K(刘凯), Xu G-W(徐国伟), Wang Z-Q(王志琴), Yang J-C(杨建昌). Effect of nitrogen and soil moisture on nutrient absorption and quality of rice. J Northwest Sci-Tech Univ Agric&For (Nat Sci Edn)(西北农林科技大学学报•自然科学版), 2004, 32(3): 15-21 (in Chinese with English abstract)

[13]Pao S-D(鲍士旦). Soil and Agricultural Chemistry Analysis (土壤农化分析). Beijing: China Agriculture Pressm, 2000. pp 264-271 (in Chinese)

[14]Ling Q-H(凌启鸿), Zhang H-C(张洪程), Dai Q-G(戴其根), Ding Y-F(丁艳锋), Ling L(凌励), Su Z-F(苏祖芳), Xu M(徐茂), Que J-H(阙金华), Wang S-H(王绍华). Study on precise and quantitative N application in Rice. Sci Agric Sin (中国农业科学), 2005, 38(12): 2457-2467 (in Chinese with English abstract)

[15]Li G-H(李刚华), Zhang G-F(张国发), Chen G-L(陈功磊),Wang S-H(王绍华), Ling Q-H(凌启鸿), Ding Y-F(丁艳锋). Population characteristics of super japonica rice Ningjing 1 and Ningjing 3 and its responses to nitrogen. Acta Agron Sin (作物学报), 2009, 35(6): 1106-1114 (in Chinese with English abstract)

[16]Chen W-F, Xu Z-J, Zhang W-Z, Zhang L-B, Yang S-R. Creation of new plant type and breeding rice for super high yield. Acta Agron Sin (作物学报), 2001, 27(5): 665-672

[17]Zhang H-S(张洪松), Tadatoshi I(岩田忠寿). Comparison of matter production and nutrition characteristics for japonica hybrid rice and conventional rice. Southwest China J Agric Sci (西南农业学报), 1995, 8(4): 11-16 (in Chinese with English abstract)

[18]Ying J F, Peng S B, He Q R, Yang H, Yang C D, Visperas R M, Cassman K G. Comparison of high-yield rice in tropical and subtropical environments: I. Determinations of grain and dry matter yields . Field Crops Res, 1998, 57: 71-84

[19]Yang H-J(杨惠杰), Li Y-Z(李义珍), Yang R-C(杨仁崔), Jiang Z-W(姜照伟), Zheng J-S(郑景生). Dry matter production characteristics of super high-yielding rice. Chin J Rice Sci (中国水稻科学), 2001, 15(4): 265-270 (in Chinese with English abstract)

[20]Yang H-J(杨惠杰), Yang R-C(杨仁崔), Li Y-Z(李义珍), Jiang Z-W(姜照伟), Zheng J-S(郑景生).Yield potential and yield components of super high-yielding rice cultivars. Fujian J Agric Sci (福建农业学报), 2000, 15(3): 1-8 (in Chinese with English abstract)

[21]Yang H-J(杨惠杰), Yang R-C(杨仁崔), Li Y-Z(李义珍), Zheng J-S(郑景生), Jiang Z-W(姜照伟). Determination factor for super-high yield of rice. Fujian J Agric Sci (福建农业学报), 2002, 17(4): 199-203 (in Chinese with English abstract)

[22]Ling Q-H(凌启鸿), Zhang H-C(张洪程), Cai J-Z(蔡建中), Su Z-F(苏祖芳), Ling Q(凌励). Investigation on the population quality of high yield and its optimizing control programme in rice. Sci Agric Sin (中国农业科学), 1993, 26(6): 1-11 (in Chinese with English abstract)

[23]Ling Q-H(凌启鸿), Zhang H-C(张洪程), Ding Y-F(丁艳锋), Zhang Y-B(张益斌). Advances in high yielding techniques in rice—Precise and quantitative cultivation. China Rice (中国稻米), 2005, (1): 3-7 (in Chinese)

[24]Zhang H-C(张洪程), Wu G-C(吴桂成), Wu W-G(吴文革), Dai Q-G(戴其根), Huo Z-Y(霍中洋), Xu K(许轲), Gao H(高辉), Wei H-Y(魏海燕), Huang X-F(黄幸福), Gong J-L(龚金龙). The SOI model of quantitative cultivation of Super-High yielding Rice. Sci Agric Sin (中国农业科学), 2010, 43(13): 2645-2660 (in Chinese with English abstract)

[25]Zou Y-B(邹应斌), Zhou S-Y(周上游), Tang Q-Y(唐起源). Status and outlook of high yielding cultivation researches on China super hybrid rice. Rev China Agric Sci Technol (中国农业科技导报), 2003, 5 (1): 31-35 (in Chinese with English abstract)

[26]Kashiwagi T, Hirotsu N, Ujiie K, Ishimaru K. Lodging resistance locus prl5 improves physical strength of the lower plant part under different conditions of fertilization in rice (Oryza sativa L.). Field Crops Res, 2010, 115: 107-115

[27]Yu W-T(宇万太), Ma Q(马强), Zhou H(周桦), Shen S-M(沈善敏). Productivity and nutrient budget of rice ecosystem in lower reaches of Liaohe River plain under effects of different fertilization patterns. Chin J Ecol (生态学杂志), 2007, 26(9): 1350-1354 (in Chinese with English abstract)

[28]Ling Q-H(凌启鸿). Theory and Technology of Rice Precision and Quantitative Cultivation (水稻精确定量栽培理论与技术). Beijing: China Agriculture Press, 2007. pp 76-91 (in Chinese)

[29]Li J-H(李景蕻), Li G-H(李刚华), Zhang Y-G(张应贵), Luo Q-R(罗启荣), Yang C-D(杨从党), Wang S-H(王绍华), Liu Z-H(刘正辉), Wang Q-S(王强盛), Ding Y-F(丁艳锋). Effects of precise and quantitative cultivation on plant type and yield of rice in high altitude and cold ecological area. Sci Agric Sin (中国农业科学), 2009, 42(9): 3067-3077 (in Chinese with English abstract)

[30]Ling Q-H. Formation and development of theory and technological system of rice cultivation with Chinese characteristics—report for the 100th Anniversary of Chen Yongkang’S Birth. Jiangsu J Agric Sci (江苏农业学报), 2008, 24 (2): 101-103 (in Chinese with English abstract)

[31]Peng S-B(彭少兵), Huang J-L(黄见良), Zhong X-H(钟旭华), Yang J-C(杨建昌), Wang G-H(王光火), Zou Y-B(邹应斌), Zhang F-S(张福锁), Zhu Q-S(朱庆森), Buresh R,Witt C. Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in china. Sci Agric Sin (中国农业科学), 2002 ,35 (9): 1095-1103(in Chinese with English abstract)

[32]Jing Q, Bouman B, Keulen H V, Hengsdijk H, Cao W X, Dai T B. Disentangling the effect of environmental factors on yield and nitrogen uptake of irrigated rice in Asia. Agricl Syst, 2009, 98: 177-188

[33]Yoshida H, Horie T. A model for simulating plant N accumulation, growth and yield of diverse rice genotypes grown under different soil and climatic conditions. Field Crops Res, 2010, 117: 122-130

[34]Peng S B, Buresh R J, Huang J L, Zhong X H, Zou Y B,Yang J C, Wang G H, Liu Y Y, Hu R F, Tang Q Y. Improving nitrogen fertilization in rice by site-specific N management: a review. Sustain Agric, 2011, 7: 943-952
[1] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[2] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[3] 张军, 周冬冬, 许轲, 李必忠, 刘忠红, 周年兵, 方书亮, 张永进, 汤洁, 安礼政. 淮北地区麦茬机插优质食味粳稻氮肥减量的精确运筹[J]. 作物学报, 2022, 48(2): 410-422.
[4] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[5] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[6] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[7] 王亚梁, 朱德峰, 张玉屏, 陈若霞, 向镜, 陈惠哲, 谌江华, 汪峰. 连作杂交晚稻精准条播长秧龄机插的生长及产量特性分析[J]. 作物学报, 2022, 48(1): 215-225.
[8] 陈云, 刘昆, 张宏路, 李思宇, 张亚军, 韦佳利, 张耗, 顾骏飞, 刘立军, 杨建昌. 机插密度和穗肥减量对优质食味水稻品种籽粒淀粉合成的影响[J]. 作物学报, 2021, 47(8): 1540-1550.
[9] 李静, 王洪章, 刘鹏, 张吉旺, 赵斌, 任佰朝. 夏玉米不同栽培模式花后叶片光合性能的差异[J]. 作物学报, 2021, 47(7): 1351-1359.
[10] 刘秋员, 周磊, 田晋钰, 程爽, 陶钰, 邢志鹏, 刘国栋, 魏海燕, 张洪程. 长江中下游地区常规中熟粳稻产量、品质及氮素吸收性状的相互关系分析[J]. 作物学报, 2021, 47(5): 904-914.
[11] 张矞勋, 齐拓野, 孙源, 璩向宁, 曹媛, 吴梦瑶, 刘春虹, 王磊. 高分六号遥感影像植被特征及其在冬小麦苗期LAI反演中的应用[J]. 作物学报, 2021, 47(12): 2532-2540.
[12] 黄恒, 姜恒鑫, 刘光明, 袁嘉琦, 汪源, 赵灿, 王维领, 霍中洋, 许轲, 戴其根, 张洪程, 李德剑, 刘国林. 侧深施氮对水稻产量及氮素吸收利用的影响[J]. 作物学报, 2021, 47(11): 2232-2249.
[13] 吕腾飞, 谌洁, 代邹, 马鹏, 杨志远, 郑传刚, 马均. 缓释氮肥与尿素配施对机插杂交籼稻碳氮积累的影响[J]. 作物学报, 2021, 47(10): 1966-1977.
[14] 钟晓媛, 邓飞, 陈多, 田青兰, 赵敏, 王丽, 陶有凤, 任万军. 播期对机插杂交籼稻不同茎蘖部位稻穗枝梗数和颖花数的影响[J]. 作物学报, 2021, 47(10): 2012-2027.
[15] 崔颖, 蔺宏宏, 谢云, 刘素红. AquaCrop模型在东北黑土区作物产量预测中的应用研究[J]. 作物学报, 2021, 47(1): 159-168.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!