欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (05): 896-903.doi: 10.3724/SP.J.1006.2012.00896

• 耕作栽培·生理生化 • 上一篇    下一篇

南方稻区水稻产量差的变化及其气候影响因素

石全红,刘建刚,王兆华,陶婷婷,陈阜,褚庆全*   

  1. 中国农业大学农学与生物技术学院 / 农业部农作制度重点开放实验室, 北京100193
  • 收稿日期:2011-10-10 修回日期:2012-01-19 出版日期:2012-05-12 网络出版日期:2012-03-05
  • 通讯作者: 褚庆全, E-mail: cauchu@cau.edu.cn
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2009CB118608)和国家公益性行业(农业)科研专项(201103001和200903003)资助。

Change of Rice Yield Gaps and Influential Climatic Factors in Southern China

SHI Quan-Hong,LIU Jian-Gang,WANG Zhao-Hua,TAO Ting-Ting,CHEN Fu,CHU Qing-Quan*   

  1. College of Agronomy and Biotechnology, China Agricultural University / Key Laboratory of Farming System, Ministry of Agriculture, Beijing 100193, China
  • Received:2011-10-10 Revised:2012-01-19 Published:2012-05-12 Published online:2012-03-05
  • Contact: 褚庆全, E-mail: cauchu@cau.edu.cn

摘要: 为了研究南方稻作区水稻理论生产潜力、单产的提升空间以及气候变化因素对水稻生产潜力的影响,探索区域水稻生产的限制因素和提高水稻产量的技术途径,本研究利用AZE (农业生态区域法)模型对南方稻区1980—2010水稻光温生产潜力进行测算,结合水稻大田平均产量,对该区域水稻光温生产潜力和大田平均单产之间的产量差及其时空变化特点进行研究,并分析了产量差变化的气候影响因素。分析表明,30年来该区域早稻光温生产潜力呈上升趋势,且增幅大于实际产量增加的幅度,二者之间的产量差不断扩大;一季中稻光温生产潜力呈下降趋势,产量差逐步缩小;晚稻光温生产潜力亦呈不断下降的趋势,产量差不断缩小。对区域气候变化分析表明,水稻生育期内辐射总量及温度变化是影响光温生产潜力的关键因子,早稻生育期内温度升高对水稻产量的正效应超过辐射下降的负效应,光温生产潜力不断增加,而一季中稻及晚稻生育期内辐射下降对产量的影响更大,水稻生产潜力呈下降趋势。不同省份间,水稻生育期内辐射及温度变化不同,光温生产潜力及产量差变化趋势空间差异明显。

关键词: 南方稻区, 水稻, 产量差, 光温生产潜力, 气候因素

Abstract: In order to study theoretical potential productivity, yield promotion space, yield constraints and the solution approaches,we used AEZ (Agricultural Ecology Zone) model to estimate the photothermal potential productivity of rice and calculate the rice yield gaps from 1980 to 2010 in southern China. The results showed that early rice potential productivity continued to increase with grater increasing rate than the actual yield, so the early rice yield gap became bigger. The potential productivity of medium rice and late rice was declined; and the rice yield gap became smaller. The analysis of climatic factors showed that temperature and radiation in rice growth period were the most important impact factors for rice potential yield and yield gaps. The positive effect of temperature increasing for the early rice was bigger than the negative effect of radiation declining, resulting in the increase of the potential productivity. On the contrary, the negative effect of radiation declining for medium rice and late rice was bigger, so the potential productivity was dropping. The temperature and radiation in rice growth period were different, causing different changing trends of rice potential yield and yield gap between provinces.

Key words: Southern China, Rice, Yield gap, Photothermal potential productivity, Climatic factors

[1]Wang C-Z(王纯枝), Li L-T(李良涛). Status and perspective of crop yield gap. Chin J Eco-Agric (中国生态农业学报), 2009, 17(6): 1283–1287 (in Chinese with English abstract)

[2]Lin Y-F(林毅夫). China Agricultural Research Priority (中国农业科研优先序). Beijing: China Agriculture Press, 1995. pp 70–76 (in Chinese)

[3]Chen H-Z(陈惠哲), Zhu D-F(朱德峰), Yang S-H(杨仕华), Zhang Y-P(张玉屏), Lin X-Q(林贤青). Rice yield gap and yield potential in South China. China Rice (中国稻米), 2004, (4): 9–10 (in Chinese)

[4]Elsamma J. Yield gap of rice in Alappuzha district of Kerala. J Trop Agric, 2006, 44: 88–90

[5]Aggarwal P K, Hebbar K B, Venugopalan M V, Rani S, Bala A, Biswal A, Wani S P. Quantification of Yield Gaps in Rain-Fed Rice, Wheat, Cotton and Mustard in India. India: International Crops Research Institute for the Semi-Arid Tropics, 2008. pp 1–38

[6]Minas K P, Frank G D, Edward M H. Bridging the Rice Yield Gap in Asia-Pacific Region. Rome: FAO Regional Office for Asia and the Pacific, 2000. pp 2–163

[7]Mathias B, Johnson D E. Rice yield and productivity gaps in irrigated systems of the forest zone of CoÃte d’Ivoire. Field Crops Res, 1999, 60: 201–208

[8]Zhang X-G(张旭光). Impacts of Climate Changes on Crop Potential Productivity in Northeast China (气候变化对东北粮食作物生产潜力的影响). Changsha: Hunan Agricultural University, 2007. pp 32–45 (in Chinese with English abstract)

[9]Wang D(王丹). Impact of Climate Change on Chinese Grain Security and Countermeasures (气候变化对中国粮食安全的影响及对策研究). Wuhan: Central China Agricultural University, 2009. pp 93–105 (in Chinese with English abstract)

[10]Zhang J-P(张建平), Zhao Y-X(赵艳霞), Wang C-Y(王春乙), He Y(何勇). Effect of climate change on growth and yield of double-harvest rice in the southern China. Adv Clim Change Res (气候变化研究进展), 2005, 11(4): 151–156 (in Chinese with English abstract)

[11]Xiong W, Declan C, Lin E D. Potential impacts of climate change and climate variability on China’s rice yield and production. Clim Res, 2009, 40: 23–35

[12]Ge D-K(葛道阔), Jin Z-Q(金之庆). Impacts of climate change and its variability on rice production in the middle and lower valley of the Yangtze River, China. Chin J Rice Sci (中国水稻科学), 2009, 23(1): 57–64 (in Chinese with English abstract)

[13]Zhao H-Y(赵海燕), Yao F-M(姚凤梅), Zhang Y(张勇), Xu B(徐宾), Yuan J(袁静), Hu Y-N(胡亚南), Xu Y-L(许吟隆). Correlation analysis of rice seed setting rate and weight of 1000-grain and agro-meteorology over the middle and lower reaches of the Yangtze River. Sci Agric Sin (中国农业科学), 2006, 39(9): 1765–1771 (in Chinese with English abstract)

[14]Li C-L(李春玲). Climate change and its impact on rice production in Xingning city, Guangdong province. Mod Agric Sci Technol (现代农业科技), 2011, (10): 302–303 (in Chinese)

[15]Zhang T Y, Zhua J, Reiner W M. Responses of rice yields to recent climate change in China: an empirical assessment based on long-term observations at different spatial scales (1981–2005). Agric For Meteorol, 2010, 150: 1128–1137

[16]Wei J-D(魏金连), Pan X-H(潘晓华), Deng Q-H(邓强辉). Effects of nighttime temperature increase on the yield of double season rice. Acta Ecol Sin (生态学报), 2010, 30(10): 2793–2798 (in Chinese with English abstract)

[17]Yu K(于堃), Song J(宋静), Gao P(高苹). Characteristics of heat damage for rice in Jiangsu province. Sci Meteorol Sin (气象科学), 2010, 30(4): 530–533 (in Chinese with English abstract)

[18]Liao X-Y(廖西元). Technology for Regional Rice Target Production (水稻区域目标产量生产技术规范). Beijing: China Agricultural Science and Technology Press, 2010. pp 145–325 (in Chinese)

[19]Ministry of Agriculture of the People’s Republic of China (中华人民共和国农业部). Agricultural Statistics in Recent 60 Years of China (新中国农业60年统计资料). Beijing: China Agriculture Press, 2009. pp 165–212 (in Chinese)

[20]Wang H(王宏), Chen F(陈阜), Shi Q-H(石全红), Fan S-C(范士超), Chu Q-Q(褚庆全). Analysis of factors on impacting potential productivity of winter wheat in Huanghuaihai agricultural area over 30 years. Trans CSAE (农业工程学报), 2010, 26(supp1): 90–95

[21]Xie G-H(谢光辉), Han D-Q(韩东倩), Wang X-Y(王晓玉), Lü R-H(吕润海). Harvest index and residue factor of cereal crops in China. J China Agric Univ (中国农业大学学报), 2011, 16(1): 1–8 (in Chinese with English abstract)

[22]Lin Y-F(林毅夫), Shen M-L(沈明亮), Zhou H(周皓). China’s Agricultural Research Priority (中国农业科研优先序). Beijing: China Agriculture Press, 1996. pp 47–100 (in Chinese)

[23]Ma X-Q(马晓群), Xu Y(许莹), Zhao H-Y(赵海燕). Impacts of maximum or minimum temperature on yield and yield components of single season indica rice in Yangtze-Huaihe area. Geograph Res (地理研究), 2008, 27(3): 603–612 (in Chinese with English abstract)

[24]Gu X-Q(辜晓青), Li M-H(李美华), Cai Z(蔡哲), Yin J-M(殷剑敏). Research on climatic potential productivity of early rice in Jiangxi province under the background of climatic change. Chin J Agrometeorol (中国农业气象), 2010, 31(supp1): 84–89 (in Chinese with English abstract)

[25]Xie X-J(谢晓金), Li B-B(李秉柏), Wang L(王琳), Dai Q-R(戴秦如), Shen S-H(申双和). Spatial and temporal distribution of high temperature and strategies to rice florescence harm in the lower-middle reaches of Yangtze River. Chin J Agrometeorol (中国农业气象), 2010, 31(1): 144–150 (in Chinese with English abstract)

[26]Wang H-G(王宏广). China Agriculture: Problems, Potentials, Roads and Benefits (中国农业: 问题•潜力•道路•效益). Beijing: China Agriculture Press, 1993. pp 122–133 (in Chinese)

[27]Lobell D B, Kenneth G C. Crop yield gaps: Their importance, magnitudes, and causes. Annu Rev Environ Res, 2009, 34: 179–204

[28]Boling A A, Bouman B A M, Tuong T P. Yield gap analysis and the effect of nitrogen and water on photoperiod-sensitive Jasmine rice in north-east Thailand. NJAS—Wageningen J Life Sci, 2010, 58: 11–19
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!