欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (09): 1668-1673.doi: 10.3724/SP.J.1006.2013.01668

• 耕作栽培·生理生化 • 上一篇    下一篇

外源硝酸还原酶(NR)抑制剂对油菜植株内NR活性的影响及其与硝酸盐含量的关系

黄海涛1,荣湘民1,宋海星1,刘强1,廖琼1,罗继鹏1,顾继东1,2,官春云3,张振华1,*   

  1. 1 湖南农业大学资源环境学院, 湖南长沙 410128; 2香港大学生物科学学院, 香港; 3国家油料改良中心湖南分中心, 湖南长沙 410128
  • 收稿日期:2012-10-07 修回日期:2013-04-22 出版日期:2013-09-12 网络出版日期:2013-07-09
  • 基金资助:

    本研究由国家自然科学基金项目(31101596, 31071851), 湖南农业大学人才引进基金项目(11YJ21), 湖南农业大学资源环境学院后备领军人才基金项目,省级教改一般项目(SCX1221)和国家“十二五”科技支撑计划(2012BAD15B04)项目资助。

Effect of Nitrate Reductase (NR) Inhibitor on NR Activity in Oilseed Rape (Brassica napus L.) and Its Relation to Nitrate Content

HUANG Hai-Tao1,RONG Xiang-Min1,*,SONG Hai-Xing1,LIU Qiang1,LIAO Qiong1,LUO Ji-Peng1,GU Ji-Dong1,2,GUAN Chun-Yun3,ZHANG Zhen-Hua1,*   

  1. 1 College of Resources and Environment Sciences, Hunan Agricultural University, Changsha 410128, China; 2 School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China; 3 National Center of Oilseed Crops Improvement (Hunan Branch), Changsha 410128, China
  • Received:2012-10-07 Revised:2013-04-22 Published:2013-09-12 Published online:2013-07-09

摘要:

为进一步揭示硝酸还原酶(nitrate reductase, NR)活性的调控机制及其与植株体内硝酸盐含量的关系。本试验在正常供氮(15 mmol L–1 NO3)和缺氮(7.5 mmol L–1 NO3)条件下, 以氮高效(H1:742H2: Xiangyou15)和氮低效(L1: 814L2: H8)油菜基因型为研究材料, 通过NR活性的专性抑制剂处理, 研究NR活性和硝酸盐含量的基因型和氮水平差异。结果表明, NR专性抑制剂处理可以显著降低叶片NR活性, 正常供氮和缺氮条件下分别降低53.0%57.6%, 但对叶片硝酸盐的含量没有显著影响。正常供氮条件下的NR活性和硝酸盐含量比缺氮条件下分别高46.9%16.4%。氮高效油菜基因型的硝酸盐含量显著低于氮低效基因型。H2NR活性(NRAact)显著高于氮低效基因型的本质原因是其主效基因(nia2)的相对表达量高于氮低效基因型。本研究充分表明NR活性和硝酸盐含量存在明显的基因型和氮水平差异, 一定程度的NR活性变化对植株体内硝酸盐的含量并没有显著的影响。

关键词: 硝酸还原酶(NR)硝酸盐含量, 油菜, 基因型, 氮水平

Abstract:

 This study aims at inspecting the regulation mechanisms of NR activity and its relation to nitrate content in oilseed rape. A sand culture experiment with N treatment at normal (15 mmol L–1 NO3) and deficiency (7.5 mmol L–1 NO3) levels and NR activity obligate inhibitor treatment using oilseed rape genotypes with high nitrogen use efficiency (NUE) (H1: 742 and H2: Xiangyou 15) and low NUE (L1: 814 and L2: H8) was conducted to study differences of NR activity and nitrate contents between genotypes and N application levels. The results indicated that, compared with control treatment, inhibitor treatment under N normal and deficiency levels decreased NR activity by 54.1% and 55.9% respectively, but could not influence the nitrate content of leaves. NR activity and nitrate content of N normal level treatment were 46.9% and 16.4% higher than those of N deficiency level. Nitrate content of high NUE genotypes was significantly lower than that of low NUE genotypes. NR activity (NRAact) of H2 was significantly higher than that of low NUE genotype, resulting from that H2 possesses higher relative expression level of major NR gene (nia2). In conclusion, there are significant differences in NR activity and nitrate content between genotypes and N application levels. However, nitrate content can not be significantly influenced by somewhat changes of NR activity.

Key words: Nitrate reductase (NR), Nitrate content, Oilseed rape (Brassica napus L.), Genotypes, Nitrogen (N) application levels

[1]Shen Q-R(沈其荣), Tang L(汤利), Xu Y-C(徐阳春). A review on the behavior of nitrate in vacuoles of plants. Acta Pedol Sin (土壤学报), 2003, 40(3): 465–470 (in Chinese with English abstract)



[2]Liu Z(刘忠), Wang Z-H(王朝辉), Li S-X(李生秀). A preliminary study on why it is difficult to reduce nitrate spinach petiole. Sci Agric Sin (中国农业科学), 2006, 39(11): 2294–2299 (in Chinese with English abstract)



[3]Miller A J, Smith S J. Cytosolic nitrate ion homeostasis, could it have a role in sensing nitrogen status. Ann Bot, 2008, 101: 485–489



[4]Cao Y-B(曹岩坡), Gao Z-Q(高志奎), He J-P(何俊萍), Wang M(王梅), Gao R-F(高荣孚). Effects of exogenous salicylic acid on nitrate accumulation and reduction and assimilation in the leaves of Chinese chive. Acta Hort Sin (园艺学报), 2009, 36(3): 415–420 (in Chinese with English abstract)



[5]Liu J-X(刘金鑫), Tian Q-Y(田秋英), Chen F-J(陈范骏), Mi G-H(米国华). Nitrate accumulation in maize and its role in adaptation to lasting low nitrogen environments. Plant Nutr Fert Sci (植物营养与肥料学报), 2009, 15(3): 501–508 (in Chinese with English abstract)



[6]Zhang Z-H(张振华), Song H-X(宋海星), Liu Q(刘强), Rong X-M(荣湘民), Xie G-X(谢桂先), Peng J-W(彭建伟), Zhang Y-P(张玉平), Guan C-Y(官春云), Chen S-Y(陈社员). Absorption, distribution, and translocation of nitrogen at growth stages in oilseed rape plant. Acta Agron Sin (作物学报), 2010, 36(2): 321–326 (in Chinese with English abstract)



[7]Cao C-L(曹翠玲), Liu J-Z(刘建朝), Yao C(姚晨). Effect of different respiratory inhibitors on the nitrate reductase activity. J Northwest Agric For Univ (西北农林科技大学学报), 2007, 35(8): 185–188 (in Chinese with English abstract)



[8]Lea U S, Hoopen F T, Kaiser F P W M, Meyer C, Lillo C. Mutation of the regulatory phosphorylation site of tobacco nitrate reductase results in high nitrite excretion and NO emission from leaf and root tissue. Planta, 2004, 219: 59–65



[9]Kaur G, Chandna R, Pandey R, Abrol Y P, Iqbal M, Ahmad A. Sulfur starvation and restoration affect nitrate uptake and assimilation in rapeseed. Protoplasma, 2011, 248: 299–311



[10]Garcia-Mata C, Lamattina L. Abscisic acid, nitric oxide and stomatal closure is nitrate reductase one of the missing links. Trends Plant Sci, 2003, 8: 20–26



[11]Fan X-R(范晓荣). Physiological and Molecular Mechanisms of Nitrate Transmembrane Transport in Rice. PhD Dissertation Thesis Nanjing Agricultural University, 2005 (in Chinese with English abstract)



[12]Fan X R, Jia L J, Li Y L, Smith S J, Miller A J, Shen Q R. Comparing nitrate storage and remobilization in two rice cultivars that differ in their nitrogen use efficiency. J Exp Bot, 2007, 58: 1729–1740



[13]Chen L-Z(陈龙正), Liang L(梁亮), Xu H(徐海), Song B(宋波), Su X-J(苏小俊), Yuan X-H(袁希汉). Relationship of photosynthetic characters and nitrate reductase activity of pakchoi. Acta Bot Boreali-Occident Sin (西北植物学报), 2009, 29(11): 2256–2260 (in Chinese with English abstract)



[14]Si J-Y(司江英), Wang X-L(汪晓丽), Chen P(陈平), Feng K(封克). Effect of NR inhibitor and NH4+ on NO3- absorpion of different rice genotypes. J Ynagzhou Univ (扬州大学学报), 2004, 25(1): 59–62 (in Chinese with English abstract)



[15]Zhao S P, Ye X Z, Zhang Y Z, Zheng J C. The contribution of bnnrt1 and bnnrt2 to nitrate accumulation varied according to genotypes in Chinese cabbage. African J Biotech, 2010, 9: 4910–4917



[16]Huang C-B(黄彩变), Wang Z-H(王朝辉), Li S-X(李生秀). Nutritional and physiological significance of nitrate accumulation in plant vacuolar. Soils (土壤), 2006, 38(6): 820–824 (in Chinese with English abstract)



[17]Botrel A, Kaiser W M. Nitrate reductase activation state in barley roots in relation to the energy and carbohydrate status. Planta, 1997, 201: 496–501



[18]Kaiser W M, Huber S. Modulation of nitrate reductase in vivo and in vitro: effects of phosphoprotein phosphatase inhibitors, free Mg2+ and 5’AMP. Planta, 1994, 193: 358–364



[19]Huang C-B(黄彩变), Wang Z-H(王朝辉), Wang X-Y(王小英), Li S-X(李生秀). Nitrate accumulation and reduction in spinach and their relations to plant growth. J Agro-Environ Sci (农业环境科学学报), 2011, 30(4): 613–618 (in Chinese with English abstract)



[20]Miller A J, Smith S J. Nitrate transport and compartmentation in cereal root cells. J Exp Bot, 1996, 47: 843–854

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180.
[4] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[5] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[6] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[7] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[8] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[9] 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39.
[10] 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740.
[11] 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823.
[12] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[13] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[14] 吴冰卉, 王桂萍, 王玉斌, 李召虎, 张明才. ACC处理对不同基因型玉米幼苗响应氮素供给的调控效应[J]. 作物学报, 2021, 47(5): 799-806.
[15] 姚佳瑜, 于吉祥, 王志琴, 刘立军, 周娟, 张伟杨, 杨建昌. 水稻内源油菜素甾醇对施氮量的响应及其对颖花退化的调控作用[J]. 作物学报, 2021, 47(5): 894-903.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!