作物学报 ›› 2014, Vol. 40 ›› Issue (03): 519-530.doi: 10.3724/SP.J.1006.2014.00519
王小春1,杨文钰1,*,邓小燕1,张群1,雍太文1,刘卫国1,杨峰1,毛树明2
WANG Xiao-Chun1,YANG Wen-Yu1,*,DENG Xiao-Yan1,ZHANG Qun1,YONG Tai-Wen1,LIU Wei-Guo1,YANG Feng1,MAO Shu-Ming2
摘要:
研究西南地区玉米主要2种套作模式下氮素吸收利用差异及氮肥调控效应, 为氮素高效利用提供科学依据。在四川2个玉米主产区, 通过连续4年的大田试验, 对比研究了玉/豆和玉/薯模式下玉米氮素吸收利用差异和不同供氮水平对玉米氮素吸收的调控效应。结果表明, 玉/豆模式下玉米收获期植株中的氮素积累2个试验点平均较玉/薯模式增加7.11%, 氮收获指数增加2.00%左右, 氮素吸收效率增加7.83%, 成熟期籽粒中氮素的分配比例增加1.76%, 而叶、茎鞘中氮素的分配比例分别减少5.85%和2.75%。分带轮作后, 由于不同前茬对土壤养分影响不同, 再加上套作优势, 玉/豆模式下玉米在生长前期就表现出明显的优势, 到收获期植株氮素积累2个试验点平均较玉/薯增加11.85%, 氮素吸收效率增加11.84%。在玉米氮素积累关键时期, 玉/豆模式在低氮处理下玉米植株氮素的积累量显著高于玉/薯模式相同施氮处理, 而在高氮处理下2种模式间差异不大或者表现相反, 氮肥偏生产力、氮素农艺效率和氮肥利用率也有相似的结果; 玉/豆模式在180 kg hm-2施氮量下较其他处理显著提高了玉米氮素农学利用率、氮素吸收利用率和籽粒中氮素的分配量, 玉/薯模式下玉米氮素农学利用率和氮肥利用效率, 在180~270 kg hm-2施氮量处理下较高; 花后氮素同化量玉/豆模式显著高于玉/薯; 2种模式均以施纯氮180~270 kg hm-2处理有利于氮素转运和花后氮素同化量积累。
[1]王小春, 杨文钰, 任万军, 邓小燕, 张群, 向达兵, 雍太文. 小麦/玉米/大豆和小麦/玉米/甘薯套作体系中玉米产量及养分吸收的差异. 植物营养与肥料学报, 2012, 18: 803–812Wang X C, Yang W Y, Ren W J, Deng X Y, Zhang Q, Xiang D B, Yong T W. Study on yield and differences of nutrient absorptions of maize in wheat/maize/soybean and wheat/maize/sweet potato relay intercropping systems. Plant Nutr Fert Sci, 2012, 18: 803–812 (in Chinese with English abstract)[2]余常兵, 孙建好, 李隆. 种间相互作用对作物生长及养分吸收的影响. 植物营养与肥料学报, 2009, 15: 1–8Yu C B, Sun J H, Li L. Effect of interspecific interaction on crop growth and nutrition accumulation. Plant Nutr Fert Sci, 2009, 15: 1–8 (in Chinese with English abstract)[3]雍太文, 杨文钰, 任万军. 两种三熟套作体系中的氮素转移及吸收利用. 中国农业科学, 2009, 42: 3170–3178Yong T W, Yang W Y, Ren W J. Analysis of the nitrogen transfer, nitrogen uptake and utilization in the two relay-planting systems. Sci Agric Sin, 2009, 42: 3170–3178 (in Chinese with English abstract)[4]雍太文, 陈小容, 杨文钰. 小麦/玉米/大豆三熟套作体系中小麦根系分泌特性及氮素吸收研究. 作物学报, 2010, 36: 477–485Yong T W, Chen X R, Yang W Y. Root exudates and nitrogen uptake of wheat in wheat/maize/soybean relay cropping system. Acta Agron Sin, 2010, 36: 477–485 (in Chinese with English abstract)[5]雍太文, 杨文钰, 任万军. “小麦/玉米/大豆”套作体系中不同作物间的相互作用及氮素的转移、吸收. 核农学报, 2009, 23: 320–326Yong T W, Yang W Y, Ren W J. The reciprocity and nitrogen transfer in inter-cropping and inter-planting system of “wheat/maize/soybean”. J Nucl Agric Sci, 2009, 23: 320–326 (in Chinese with English abstract)[6]雍太文, 王小春, 杨文钰. 两种三熟套作体系中的氮素吸收利用及种间相互作用. 四川农业大学学报, 2009, 27: 167–172Yong T W, Wang X C, Yang W Y. Study on the nitrogen uptake and utilization and interspecies reciprocity in the two relay-planting systems. Sichuan Agric Univ, 2009, 27: 167–172 (in Chinese with English abstract)[7]宁堂原, 焦念元, 李增嘉. 施氮水平对不同种植制度下玉米氮利用及产量和品质的影响. 应用生态学报, 2006, 17: 2332–2336Ning T Y, Jiao N Y, Li Z J. Effects of N application rate on N utilization, yield and quality of maize under different cropping systems. Chin J Appl Ecol, 2006, 17: 2332–2336 (in Chinese with English abstract)[8]李隆, 杨思存, 孙建好. 小麦/大豆间作中作物种间的竞争作用和促进作用. 应用生态学报, 1999, 10: 197–200Li L, Yang S C, Sun J H. Interspecific competition and facilitation in wheat/soybean intercropping system. Chin J Appl Ecol, 1999, 10: 197–200 (in Chinese with English abstract)[9]雍太文, 杨文钰, 向达兵, 朱贞颖. 小麦/玉米/大豆和小麦/玉米/甘薯套作对根际土壤细菌群落多样性及植株氮素吸收的影响. 作物学报, 2012, 38: 333–343Yong T W, Yang W Y, Xiang D B, Zhu Z Y. Effect of wheat/maize/soybean and wheat/maize/sweet potato relay strip intercropping on bacterial community diversity of rhizosphere soil and nitrogen uptake of crops. Acta Agron Sin, 2012, 38: 333–343 (in Chinese with English abstract)[10]雍太文, 杨文钰, 向达兵, 万燕, 刘卫国, 王小春. 小麦/玉米/大豆和小麦/玉米/甘薯套作对土壤氮素含量及氮素转移的影响. 作物学报, 2012, 38: 148–158Yong T W, Yang W Y, Xiang D B, Wan Y, Liu W G, Wang X C. Effect of wheat/maize/soybean and wheat/maize/sweet potato relay strip intercropping on soil nitrogen content and nitrogen transfer. Acta Agron Sin, 2012, 38: 148–158 (in Chinese with English abstract)[11]Ghosh P K, Mohanty M, Bandyopadhyay K K, Painuli D K, Misra A K. Growth, competition, yields advantage and economics in soybean/pigeonpea intercropping system in semi-arid tropics of India II. Effect of nutrient management. Field Crops Res, 2006, 96: 90–97[12]Hauggaard-Nielsen H, Jensen E S. Evaluating pea and barley cultivars for complementarity in intercropping at levels of soil N availability. Field Crops Res, 2001, 72: 185–196[13]Carr P M, Martin G B, Caton J S, Poland W W. Forage and nitrogen yield of barley-pea and oat-pea intercrops. Agron J, 1998, 90: 79–84 [14]Kushwaha H S, Chandel A S. Effect of soybean (Glycine max) intercropping under different nitrogen levels on yield, yield attributes and quality of maize (Zea mays). Indian J Agric Sci, 1997, 67: 249–252[15]吴正锋, 王空军, 董树亭, 胡昌浩, 刘鹏, 张吉旺. 高油玉米籽粒灌浆期间氮素的吸收与分配. 中国农业科学, 2005, 38: 697–702Wu Z F, Wang K J, Dong S T, Hu C H, Liu P, Zhang J W. Uptake and partitioning of nitrogen in high oil corn during grain filling period. Sci Agric Sin, 2005, 38: 697–702 (in Chinese with English abstract)[16]吕鹏, 张吉旺, 刘伟, 杨今胜, 苏凯, 刘鹏, 董树亭, 李登海. 施氮量对超高产夏玉米产量及氮素吸收利用的影响. 植物营养与肥料学报, 2011, 17: 852–860Lü P, Zhang J W, Liu W, Yang J S, Su K, Liu P, Dong S T, Li D H. Effects of nitrogen application on yield and nitrogen use efficiency of summer maize under super-high yield conditions. Plant Nutr Fert Sci, 2011, 17: 852–860 (in Chinese with English abstract)[17]霍中洋, 葛鑫, 张洪程, 戴其根, 许轲, 龚振恺. 施氮方式对不同专用小麦氮素吸收及氮肥利用率的影响. 作物学报, 2004, 30: 449–454Huo Z Y, Ge X, Zhang H C, Dai Q G, Xu K, Gong Z K. Effect of different nitrogen application types on N-absorption and N-utilization rate of specific use cultivars of wheat. Acta Agron Sin, 2004, 30: 449–454 (in Chinese with English abstract)[18]石玉, 于振文, 王东, 李延奇, 王雪. 施氮量和底追比例对小麦氮素吸收转运及产量的影响. 作物学报, 2006, 32: 1860–1866Shi Y, Yu Z W, Wang D, Li Y Q, Wang X. Effects of nitrogen rate and ratio of base fertilizer and topdressing on uptake, translocation of nitrogen and yield in wheat. Acta Agron Sin, 2006, 32: 1860–1866 (in Chinese with English abstract)[19]Oljaca S, Cvetkovic R, Kovacevic D, Vasic G, Momirovic N. Effect of plant arrangement pattern and irrigation on efficiency of maize (Zea mays) and bean (Phaseolus vulgaris) intercropping system. J Agric Sci, 2000, 135: 261–270 [20]肖焱波, 李隆, 张福锁. 小麦/蚕豆间作体系中的种间相互作用及氮转移研究. 中国农业科学, 2005, 38: 965–973Xiao Y B, Li L, Zhang F S. The interspecific nitrogen facilitation and the subsequent nitrogen transfer between the intercropped wheat and fababean. Sci Agric Sin, 2005, 38: 965–973 (in Chinese with English abstract)[21]肖焱波, 段宗颜, 金航. 小麦/蚕豆间作体系中的氮节约效应及产量优势. 植物营养与肥料学报, 2007, 13: 267–271Xiao Y B, Duan Z Y, Jin H. Spared N response and yields advantage of intercropped wheat and fababean. Plant Nutr Fert Sci, 2007, 13: 267–271 (in Chinese with English abstract)[22]Osaki M, Makoto L, Toshiaki T. Ontogenetic changes in the contents of ribulose-1, 5-bisphosphate carboxylase/oxygenase, phosphoenolpyruvate carboxlase and chlorophyll in individual leaves of maize. Soil Sci Plant Nutr, 1995, 41: 285–293[23]易镇邪, 王璞, 申丽霞. 不同类型氮肥对夏玉米氮素累积、转运与氮肥利用的影响. 作物学报, 2006, 32: 772–778Yi Z X, Wang P, Shen L X. Effects of different types of nitrogen fertilizer on nitrogen accumulation, translocation and nitrogen fertilizer utilization in summer maize. Acta Agron Sin, 2006, 32: 772–778 (in Chinese with English abstract)[24]江立庚, 曹卫星, 甘秀琴. 不同施氮水平对南方早稻氮素吸收利用及其产量和品质的影响. 中国农业科学, 2004, 37: 490–496Jiang L G, Cao W X, Gan X Q. Nitrogen uptake and utilization under different nitrogen management and influence on grain yield and quality in rice. Sci Agric Sin, 2004, 37: 490–496 (in Chinese with English abstract)[25]何萍, 金继运, 林葆. 氮肥用量对春玉米叶片衰老的影响及其机理研究. 中国农业科学, 1998, 31(3): 66–71He P, Jin J Y, Lin B. Effect of N application rates on leaf senescence and its mechanism in spring maize. Sci Agric Sin, 1998, 31(3): 66–71 (in Chinese with English abstract) |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[4] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[5] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[6] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[7] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[8] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[9] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[10] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[11] | 李鑫格, 高杨, 刘小军, 田永超, 朱艳, 曹卫星, 曹强. 播期播量及施氮量对冬小麦生长及光谱指标的影响[J]. 作物学报, 2022, 48(4): 975-987. |
[12] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[13] | 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681. |
[14] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[15] | 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738. |
|