欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (05): 769-778.doi: 10.3724/SP.J.1006.2014.00769

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻叶片早衰及盐敏感突变体osles的生理分析和基因精细定位

毛节景1,赵晨晨1,黄福灯2,潘刚1,*,程方民1,*   

  1. 1浙江大学农业与生物技术学院,浙江杭州310058;2 浙江省农业科学院,浙江杭州310021
  • 收稿日期:2013-10-14 修回日期:2014-01-12 出版日期:2014-05-12 网络出版日期:2014-03-24
  • 通讯作者: 潘刚, E-mail: pangang12@126.com; 程方民, E-mail: chengfm@zju.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30700498和31271691)资助。

Physiological Characterization and Gene Fine Mapping of a Leaf Early Senescence and Salt-Sensitive Mutant osles in Rice

MAO Jie-Jing1,ZHAO Chen-Chen1,HUANG Fu-Deng2,PAN Gang1,*,CHENG Fang-Min1,*   

  1. 1 College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; 2 Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China?
  • Received:2013-10-14 Revised:2014-01-12 Published:2014-05-12 Published online:2014-03-24

摘要:

突变体osles (Oryza sativa leaf early-senescence and salt-sensitive)是利用60Co辐射诱变籼稻品种自选1号后筛选获得的,该突变体从分蘖期开始叶片就出现早衰,主要表现为叶尖和叶边缘变黄,伴有红褐色斑点。此外,盐胁迫下,不仅突变体叶片卷曲枯萎,而且植株高度和生物量显著降低。与野生型相比,突变体除倒一叶外,倒二叶和倒三叶在分蘖期的叶绿素含量均显著降低,而POD活性则在倒一叶、倒二叶和倒三叶中依次显著升高;突变体3片叶片的MDA含量均高于野生型15%左右。除倒一叶外,突变体的SOD活性均显著高于野生型。此外,突变体和野生型3片叶中的可溶性蛋白含量依次下降,但突变体的倒一和倒二叶中的可溶性蛋白含量显著高于野生型,而倒三叶则相反;遗传分析表明,osles突变性状受一隐性基因控制,借助图位克隆技术将控制该性状的基因精细定位于第6染色体长臂的IN6-005769-11/12和RM20547两个标记之间,物理距离为210 kb,为进一步克隆该基因并揭示叶片的早衰分子生理机制奠定基础。

关键词: 水稻, osles, 基因定位, 生理分析

Abstract:

A osles (Oryza sativa leaf early-senescence and salt-sensitive) mutant, produced by 60Co γ-radiation treatment of indica cultivar Zixuan 1, was identified. The osles showed yellow at tip and margin of leaf blade with red brown spots during growth at tillering stage. In addition, under salt stress, the leaves were rolled and wilted, and plant height and plant dry weight were significantly decreased. Compared with the control plant, in the mutant plant, the contents of chlorophyll and soluble protein decreased significantly, while the activities of SOD and POD increased significantly; higher soluble protein content appeared in the 1st and 2nd leaves from top, and decreased in the 3rd leaf. Genetic analysis indicated that osles was controlled by a recessive nuclear gene, which was finely mapped in a 210 kb interval between two markers IN6-005769-11/12 and RM20547 on long arm of chromosome 6. These results will facilitate the positional cloning and functional studies of the gene.

Key words: Rice, osles, Gene mapping, Physiological analysis

[1]Lim P O, Kim H J, Nam H G. Leaf senescence. Annu Rev Plant Biol, 2007, 58: 115–136



[2]杨建昌, 朱庆森, 王志琴, 郎有忠. 亚种间杂交稻光合特性及物质积累与运转的研究. 作物学报, 1997, 23: 82–88



Yang J C, Zhu Q S, Wang Z Q, Lang Y Z. Photosynthetic characteristics, dry-matter accumulation and its translocation in intersubspecific hybrid rice. Acta Agron Sin, 1997, 23: 82–88 (in Chinese with English abstract)



[3]陆定志, 潘裕才, 马跃芳, 林宗达, 鮑为群, 金逸民, 游树鹏. 杂交水稻抽穗结实期间叶片衰老的生理生化研究. 中国农业科学, 1988, 21(3): 21–26



Lu D Z, Pan Y C, Ma Y F, Lin Z D, Bao W Q, Jin Y M, You S P. The physiological and biochemical research of leaf senescence during heading stage in hybrid rice. Sci Agric Sin, 1988, 21(3): 21–26 (in Chinese with English abstract)



[4]梁建生, 曹显祖. 杂交水稻叶片的若干生理指标与根系伤流强度关系. 江苏农学院学报, 1993, 14(4): 25–30



Liang J S, Cao X Z. Studies on the relationship between several physiological characteristics of leaf and bleeding rate of roots in hybrid rice. J Jiangsu Agric Coll, 1993, 14(4): 25–30 (in Chinese with English abstract)



[5]Wu X Y, Kuai B K, Jia J Z, Jing H C. Regulation of leaf senescence and crop genetic improvement. J Integr Plant Biol, 2012, 54: 936–952



[6]Ansari M I, Lee R, Chen S G. A novel senescence-associated gene encoding g-aminobutyric acid (GABA): pyruvate transaminase is upregulated during rice leaf senescence. Physiol Plant, 2005, 123: 1–8



[7]Lee R, Lin M, Chen S. A novel alkaline α-galactosidase gene is involved in rice leaf senescence. Plant Mol Biol, 2004, 55: 281–295



[8]Jiang H, Li M, Liang N, Yan H, Wei Y, Xu X, Liu J, Xu Z, Chen F, Wu G. Molecular cloning and function analysis of the stay green gene in rice. Plant J, 2007, 52: 197–209



[9]Park S Y, Yu J W, Park J S, Li J, Yoo S C, Lee N Y, Lee S K, Jeong S W, Seo H S, Koh H J, Jeon J S, Park Y I, Paek N C. The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell, 2007, 19: 1649–1664



[11]Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell, 2007, 19: 1362–1375



[12]Kong Z, Li M, Yang W, Xu W, Xue Y. A novel nuclear-localized CCCH-type zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice. Plant Physiol, 2006, 141: 1376–1388



[13]Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L, Wang C, Zhai H, Wan J. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29–40



[14]Sun B, Zhou Y, Lin Y. Preliminary functional analysis of a rice leaf senescence up-regulated gene. Acta Agron Sin, 2012, 38(11): 1988–1996



[15]Qiao Y, Jiang W, Lee J, Park B, Choi M S, Piao R, Woo M O, Roh J H, Han L, Paek N C, Seo H S, Koh H J. SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit μ1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa). New Phytol, 2010, 185: 258–274



[16]Morita R, Sato Y, Masuda Y, Nishimura M, Kusaba M. Defect in non-yellow coloring 3, an α/β hydrolase-fold family protein, causes a stay-green phenotype during leaf senescence in rice. Plant J, 2009, 59: 940–952



[17]Tang Y, Li M, Chen Y, Wu P, Wu G, Jiang H. Knockdown of OsPAO and OsRCCR1 cause different plant death phenotypes in rice. J Plant Physiol, 2011, 168: 1952–1959



[18]Jiao B, Wang J, Zhu X, Zeng L, Li Q, He Z. A novel protein RLS1 with NB-ARM domains is involved in chloroplast degradation during leaf senescence in rice. Mol Plant, 2012, 5: 205–217



[19]Pitakrattananukool S, Kawakatsu T, Anuntalabhochai S, Takaiwa F. Overexpression of OsRab7B3, a small GTP-binding protein gene, enhances leaf senescence in transgenic rice. Biosci Biotechnol Biochem, 2012, 76: 1296–1302



[20]Gao Q, Yang Z, Zhou Y, Yin Z, Qiu J, Liang G, Xu C. Characterization of an Abc1 kinase family gene OsABC1-2 conferring enhanced tolerance to dark-induced stress in rice. Gene, 2012, 498(2): 155–163



[21]Undan J R, Tamiru M, Abe A, Yoshida K, Kosugi S, Takagi H, Yoshida K, Kanzaki H, Saitoh H, Fekih R, Sharma S, Undan J, Yano M, Terauchi R. Mutation in OsLMS, a gene encoding a protein with two double-stranded RNA binding motifs, causes lesion mimic phenotype and early senescence in rice (Oryza sativa L.). Genes Genet Syst, 2012, 87: 169–179



[22]Fukao T, Yeung E, Bailey-Serres J. The submergence tolerance gene SUB1A delays leaf senescence under prolonged darkness through hormonal regulation in rice. Plant Physiol, 2012, 160: 1795–1807



[23]Jan A, Maruyama K, Todaka D, Kidokoro S, Abo M, Yoshimura E, Shinozaki K, Nakashima K, Yamaguchi-Shinozaki K. OsTZF1, a CCCH-tandem zinc finger protein, confers delayed senescence and stress tolerance in rice by regulating stress-related genes. Plant Physiol, 2013, 161: 1202–1216



[24]Zhou Q, Yu Q, Wang Z, Pan Y, Lv W, Zhu L, Chen R, He G. Knockdown of GDCH gene reveals reactive oxygen species-induced leaf senescence in rice. Plant Cell Environ, 2013, 36: 1476–1489



[25]Yamatani H, Sato Y, Masuda Y, Kato Y, Morita R, Fukunaga K, Nagamura Y, Nishimura M, Sakamoto W, Tanaka A, Kusaba M. NYC4, the rice ortholog of Arabidopsis THF1, is involved in the degradation of chlorophyll-protein complexes during leaf senescence. Plant J, 2013, 74: 652–662



[26]Rong H, Tang Y, Zhang H, Wu P, Chen Y, Li M, Wu G, Jiang H. The Stay-Green Rice like (SGRL) gene regulates chlorophyll degradation in rice. Plant Physiol, 2013, 170: 1367–1373



[27]Chen L J, Wuriyanghan H, Zhang Y Q, Duan K X, Chen H W, Li Q T, Lu X, He S J, Ma B, Zhang W K, Lin Q, Chen S Y, Zhang J S. An S-domain receptor-like kinase OsSIK2 confers abiotic stress tolerance and delays dark-induced leaf senescence in rice. Plant Physiol, 2013, Oct 18, DOI:10.1104/pp.113.224881



[28]Zhou Y, Huang W, Liu L, Chen T, Zhou F, Lin Y. Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence. BMC Plant Biol, 2013, 13: 132



[29]Hudson D, Guevara D R, Hand A J, Xu Z, Hao L, Chen X, Zhu T, Bi Y M, Rothstein S J. Rice cytokinin GATA transcription Factor1 regulates chloroplast development and plant architecture. Plant Physiol, 2013, 162: 132-44



[30]Chen Y, Xu Y, Luo W, Li W, Chen N, Zhang D, Chong K. The F-box protein OsFBK12 targets OsSAMS1 for degradation and affects leaf senescence and seed size in rice. Plant Physiol, 2013, Oct 21, DOI: 10.1104/pp.113.224527



[31]Singh S, Giri M K, Singh P K, Siddiqui A, Nandi A K. Down-regulation of OsSAG12-1 results in enhanced senescence and pathogen-induced cell death in transgenic rice plants. J Biosci, 2013, 38(3): 583–592



[32]Yoshida S, Forno D A, Cock J H, Gomez K A. Laboratory Manual for Physiological Studies of Rice. Philippines: IRRI, 1976. p 83



[33]张治安, 陈展宇. 植物生理学实验技术. 吉林: 吉林大学出版社, 2008. p 7



Zhang Z A, Chen Z Y. Experiment Technology of Plant Physiology. Jilin: Jilin University Press, 2008. p 7 (in Chinese)



[34]Rogers S O, Bendich A J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol, 1985, 5: 69–76



[35]Shen Y, Jiang H, Jin J, Zhang Z, Xi B, He Y, Wang G, Wang C, Qian L, Li X, Yu Q, Liu H, Chen D, Gao J, Huang H, Shi T, Yang Z. Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol, 2004, 135: 1198–205



[36]Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSR) in rice (Oryza sativa L.). Mol Gen Genet, 1996, 252: 597–607



[37]Shimoda Y, Ito H, Tanaka A. Conversion of chlorophyll b to chlorophyll a precedes magnesium dechelation for protection against necrosis in Arabidopsis. Plant J, 2012, 72(3): 501-511 



[38]Huang J, Qin F, Zang G, Kang Z, Zou H, Hu F, Yue C, Li X, Wang G. Mutation of OsDET1 increases chlorophyll content in rice. Plant Sci, 2013, 210: 241–249



[39]华春, 王任雷. 杂交稻及其三系叶片衰老过程中SOD、CAT活性和MDA含量的变化. 西北植物学报, 2003, 23: 406–409



Hua C, Wang R L. Changes of SOD and CAT activities and MDA content during senescence of hybrid rice and three lines leaves. Acta Bot Boreal-Occident Sin, 2003, 23: 406–409 (in Chinese with English abstract)



[40]汪媛. 水稻叶片衰老过程生理变化及蛋白质降解与蛋白酶活性变化研究. 扬州大学硕士学位论文, 2010



Wang Y. The Research of Physiological Changes, Protein Degradation and Protease Activity in the Process of Leaf Senescence in Rice. MS Dissertation of Yangzhou University, Yanzhou, China, 2010 (in Chinese with English abstract)



[41]董秋丽, 夏方山, 董宽虎. 碱性盐胁迫对芨芨草苗期脯氨酸和可溶性蛋白含量的影响. 畜牧与饲料科学, 2010, 31(4): 11–12



Dong Q L, Xia F S, Dong K H. Effects of alkaline salinity stress on proline content and soluble protein content of Achnatherum splendens at seedling stage. Animl Husband Feed Sci, 2010, 31(4): 11–12 (in Chinese with English abstract)



[42]田晓艳, 刘延吉, 郭迎春. 盐胁迫对NHC牧草Na+、K+、Pro、可溶性糖及可溶性蛋白的影响. 草业科学, 2008, 25(10): 34–38



Tian X Y, Liu Y J, Guo Y C. Effect of salt stress on Na+, K+, proline, soluble sugar and protein of NHC. Pratacult Sci, 2008, 25(10): 34–38 (in Chinese with English abstract)



[43]杜青, 方立魁, 桑贤春, 凌英华, 李云峰, 杨正林, 何光华, 赵芳明. 水稻叶尖早衰突变体lad的形态、生理分析与基因定位. 作物学报, 2012, 38: 168–173



Du Q, Fang L K, Sang XC, Ling Y H, Li Y F, Yang Z L, He G H, Zhao F M. Analysis of phenotype and physiology of leaf apex dead mutant (lad) in rice and mapping of mutant gene. Acta Agron Sin, 2012, 38: 168–173 (in Chinese with English abstract)



[44]Ricachenevsky F K, Sperotto R A, Menguer P K, Fett J P. Identification of Fe-excess-induced genes in rice shoots reveals a WRKY transcription factor responsive to Fe, drought and senescence. Mol Biol Rep, 2010, 37: 3735–3745



[45]Hu B, Zhu C, Li F, Tang J, Wang Y, Lin A, Liu L, Che R, Chu C. LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice. Plant Physiol, 2011, 156: 1101–1115



[46]Yang S D, Seo P J, Yoon H K, Park C M. The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. Plant Cell, 2011, 23: 2155–2168



[47]Zhang X, Ju H, Chung M, Huang P, Ahn S, Kim C S. The R-R-Type MYB-Like transcription factor, AtMYBL, is involved in promoting leaf senescence and modulates an abiotic stress response in Arabidopsis. Plant Cell Physiol, 2011, 52: 138–148

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!