欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (08): 1279-1286.doi: 10.3724/SP.J.1006.2015.01279

• 研究简报 • 上一篇    下一篇

苗期不同滴灌方式对东北春玉米产量和水分利用效率的影响

徐杰1,2,李从锋1,孟庆锋1,葛均筑3,王璞2,赵明1,*   

  1. 1中国农业科学院作物科学研究所 / 农业部作物生理生态与栽培重点开放实验室,北京 100081;2中国农业大学农业与生物技术学院,北京 100193;3华中农业大学植物科技学院,湖北武汉 430070
  • 收稿日期:2015-01-19 修回日期:2015-04-02 出版日期:2015-08-12 网络出版日期:2015-05-04
  • 通讯作者: 赵明, E-mail: zhaomingcau@163.net, Tel: 010-82108752
  • 基金资助:

    本研究由国家“十二五”科技支撑计划项目(2013BAD07B04, 2011BAD16B14)和国家现代农业产业技术体系建设专项(NYCYTX-02)资助。

Effects of Different Drip-Irrigation Modes at the Seeding Stage on Yield and Water-Use Efficiency of Spring Maize in Northeast China

XU Jie1,2,LI Cong-Feng1,MENG Qing-Feng1,GE Jun-Zhu3,WANG Pu2,ZHAO Ming1,*   

  1. 1 Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; 3 College of Plant Science & Technology of Huazhong Agricultural University, Wuhan 430070, China
  • Received:2015-01-19 Revised:2015-04-02 Published:2015-08-12 Published online:2015-05-04
  • Contact: 赵明, E-mail: zhaomingcau@163.net, Tel: 010-82108752

摘要:

春旱是东北玉米产量增长的主要障碍因素之一,滴灌可有效缓解其对玉米生产的不利影响,不同滴灌方式的效果具有差异性。本文以常规雨养玉米为对照(CK),研究了传统滴灌(采用内嵌迷宫式滴灌管)和新型滴灌(采用自流插入式滴灌管) 2种方式与不同埋管深度(0 cm5 cm10 cm)对玉米生长发育、产量和水分利用效率的影响。与对照相比,滴灌显著增产,增幅达9.5%~20.1%。传统滴灌不同埋管深度处理间产量差异不显著,而新型滴灌埋深5 cm产量显著高于地表滴灌,增幅为4.4%。同一埋深不同滴灌方式之间,新型滴灌埋深5 cm比传统滴灌增产8.8%,其他埋深差异不显著。与对照相比,滴灌处理出苗率提高11.3%,收获期穗数增加13.3%。新型滴灌埋深5 cm产量高于其他处理的原因是生殖生长期叶面积指数下降慢,显著提高收获期干物质重。与对照相比,滴灌处理水分利用效率提高8.1%~10.9%,其中新型滴灌埋深5 cm处理水分利用效率最高。因此,埋深5 cm新型滴灌是有效提高玉米产量和水分利用效率的灌溉方式。

关键词: 春旱, 滴灌埋深, 产量, 水分利用效率

Abstract:

The seasonal drought especially in spring is one of the major obstacle factors for yield improvement in maize production in Northeast China. Drip irrigation could effectively alleviate drought while different drip irrigation strategies have different impacts. Using rainfed maize as a control (CK), we compared the effects of traditional drip irrigation (using the Embedded labyrinth drip irrigation tube, TDI) and new drip irrigation (using the New drip irrigation tube, NDI) together with three depths of tube (0 cm, 5 cm and 10 cm) on maize growth, yield and water use. Compared with CK, irrigation treatments significantly increased grain yield by 9.5%–20.1%. For TDI, no significant yield difference was observed among three tube depths. For NDI, grain yield in treatment with 5 cm tube depth was 4.4% higher than that with 0 cm tube depth. At the same tube depth between TDI and NDI, no significant yield difference was observed with an exception of NDI with 5 cm tube depth, which increased yield by 8.8%. Compared with CK, yield increase with irrigation mainly resulted from the improvement of emergence rate, which was increased by 12%. The ear number per ha was improved by 13%. The higher yield in NDI with 5 cm tube depth was because of the delayed leaf senescence and higher total dry matter accumulation. Compared with CK, irrigation improved water use efficiency by 8.1%–10.9%, with the highest in NDI with 5 cm tube depth. Therefore, Using NDI with 5 cm tube depth could be an effective strategy to increase both yield and water use efficiency of spring maize in Northeast China.

Key words: Spring drought, Drip irrigation, Dripline depth, Yield, Water use efficiency

[1]Chen C, Lei C, Deng A, Qian C, Hoogmoed W, Zhang W. Will higher minimum temperatures increase corn production in Northeast China? An analysis of historical data over 1965–2008. Agric For Meteorol, 2011, 151: 1580–1588



[2]马树庆, 王琪, 于海, 徐丽萍, 张铁林. 春旱对春玉米产量的影响试验研究. 自然灾害学报, 2012, 21: 207–212



Ma S Q, Wang Q, Yu H, Xu L P, Zhang T L. Field experiment study into influence of spring drought on maize yield. J Nat Disasters, 2012, 21: 207–212 (in Chinese with English abstract)



[3]王琪, 马树庆, 徐丽萍, 于海, 张铁林. 东北地区春旱对春玉米幼苗长势的影响指标和模式. 自然灾害学报, 2011, 20: 141–147



Wang Q, Ma S Q, Xu L P, Yu H, Zhang T L. Indices and modes of spring drought influence on maize seedling growth in Northeast China. J Nat Disasters, 2011, 20: 141–147 (in Chinese with English abstract)



[4]贺伟, 布仁仓, 熊在平, 胡远满. 1961–2005年东北地区气温和降水变化趋势. 生态学报, 2013, 33: 519–531



He W, Bu R C, Xiong Z P, Hu Y M. Characteristics of temperature and precipitation in northeastern China from 1961 to 2005. Acta Ecol Sin, 2013, 33: 519–531 (in Chinese with English abstract)



[5]Meng K, Zhang X, Sui Y, Zhao J. Analysis of water characteristics of black soil over long-term experimental researches in Northeast China. Bulg J Plant Physiol, 2004, 30(3/4): 111–120



[6]宋振伟, 郭金瑞, 邓艾兴, 寇太记, 任军, 张卫建. 耕作方式对东北春玉米农田土壤水热特征的影响. 农业工程学报, 2012, 28(16): 108–114



Song Z W, Guo J R, Deng A X, Kou T J, Ren J, Zhang W J. Effects of surface tillage regimes on soil moisture and temperature of spring corn farmland in Northeast China. Trans CSAE, 2012, 28(16): 108–114 (in Chinese with English abstract)



[7]刘云发. 我国大田作物滴灌现状及发展前景. 节水灌溉, 1998, 4(4): 26–31



Liu Y F. Field crop irrigation status and development prospect in China. Water Saving Irrig, 1998, 4(4): 26–31 (in Chinese)



[8]Wanjura D F, Upchurch D R, Mahan J R, Burke J J. Cotton yield and applied water relationships under drip irrigation. Agric Water Manag, 2002, 55(3): 217–237



[9]张晓伟, 黄占斌. 滴灌条件下玉米的产量和WUE效应研究. 水土保持研究, 1999, 6(1): 72–75



Zhang X W, Huang Z B. Study on yield and WUE of corn under drip irrigation. Res Soil Water Conserv, 1999, 6(1): 72–75 (in Chinese with English abstract)



[10]Camp C R, Sadler E J, Busscher W J. A comparison of uniformity measures for drip irrigation systems. Trans ASAE, 1997, 40(4): 1013–1020



[11]Camp C R, Sadler E J, Busscher W J. Subsurface drip irrigation: a review. Trans ASAE, 1998, 41: 1353–1367



[12]Phene C J, Davis K R, Hutmacher R B, Mccormick R L. Advantages of subsurface irrigation for processing tomatoes. Acta Hortic, 1987, 200: 101–114 



[13]Douh B, Boujelben A. Effects of surface and subsurface drip irrigation on agronomic parameters of maize (Zea mays L.) under Tunisian climatic condition. J Nat Prod Plant Resour, 2011, 1(3): 8–14



[14]Patel N, Rajput T B S. Effect of drip tape placement depth and irrigation level on yield of potato. Agric Water Manag, 2007, 88(1–3): 209–223



[15]Schwankl L J, Grattan S R, Miyao E M. Drip Irrigation Burial Depth and Seed Planting Depth Effects on Tomato Germination. Proc. Third International Irrigation Symp. Oct. 28- Nov.I Phoenix Arizona. ASAE, St. Joseph, Michigan, 1990. pp 682–687



[16]李久生, 杜珍华, 栗岩峰, 李蓓. 壤土特性空间变异对地下滴灌水氮分布及夏玉米生长的影响. 中国农业科学, 2008, 41: 1717–1726



Li J S, Du Z H, Li Y F, Li B. Water and nitrogen distribution and summer maize growth in subsurface drip irrigation system as affected by spatial variations of soil properties. Sci Agric Sin, 2008, 41: 1717–1726 (in Chinese with English abstract)



[17]Ravina I, Paz E, Sofer Z, Marcu A, Shisha A, Sagi G. Control of emitter clogging in drip irrigation with reclaimed wastewater. Irrig Sci, 1992, 13(3): 129–139



[18]胡笑涛, 康绍忠, 王晓燕, 李志军. 地下滴灌灌水器的筛选试验研究. 沈阳农业大学学报, 2004, 35: 483–485



Hu X T, Kang S Z, Wang X Y, Li Z J. Experiment on choosing emitter of subsurface drip irrigation. J Shenyang Agric Univ, 2004, 35: 483–485 (in Chinese with English abstract)



[19]赵明. 自流插入式滴灌装置. 中国专利: ZL200720190042.1.2007-11-7, 2007



Zhao M. Gravity Flow Insertion Drip Irrigation System. Chinese patent: ZL200720190042.1.2007-11-7, 2007 (in Chinese)



[20]Allen R G, Pereira L S, Rase D, Smith M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56. RomeItaly: FAO- Food and Agriculture Organization of the United Nations, 1998



[21]Yu X S, Liao Y C, Olaposi I O. Effect of salinity water irrigation on maize growth in northwest region. J Chem Pharm Res, 2014, 6: 300–305



[22]Liu X B, Jin J, Wang G H, Herbert S J. Soybean yield physiology and development of high-yielding practices in Northeast China. Field Crops Res, 2008, 105: 157–171



[23]宋振伟, 郭金瑞, 任军, 闫孝贡, 郑成岩, 邓艾兴, 张卫建. 耕作方式对东北雨养区玉米光合与叶绿素荧光特性的影响. 应用生态学报, 2013, 24: 1900–1906



Song Z W, Guo J R, Ren J, Yan X G, Deng A X, Zhang W J. Effects of tillage patterns on photosynthetic and chlorophyll fluorescence characteristics of maize in rainfed area of Northeast China. Chin J Appl Ecol, 2013, 24: 1900–1906 (in Chinese with English abstract)



[24]徐翠莲, 王冀川, 高山, 徐雅丽. 土壤水分调控对滴灌春小麦产量及分利用的影响. 华北农学报, 2013, 28(3): 127–132



Xu C L, Wang J C, Gao S, Xu L N. Impacts of soil water controlling on grain yield and water use efficiency of spring wheat under drip irrigation. Acta Agric Boreali-Sin, 2013, 28(3): 127–132 (in Chinese with English abstract)



[25]任杰, 温新明, 王振华,安俊波. 地下滴灌毛管适宜埋深及间距研究进展. 水资源与水工程学报, 2007, 18(6): 48–51



Ren J, Wen X M, Wang Z H, An J B. Research progress on appropriate depth and interval of lateral pipes in subsurface drip irriagation. J Water Resour Water Eng, 2007, 18(6): 48–51 (in Chinese with English abstract)



[26] Lamm F R, Trooien T P. Dripline depth effects on corn production when crop establishment is nonlimiting. Appl Eng Agric, 2005, 21(5): 835



[27]山东农学院. 作物栽培学(上册). 北京: 农业出版社, 1985. p 229



Shandong Agriculture College. Crop Cultivation Science (first volume). Beijing: Agricultural Press, 1985. p 229 (in Chinese)



[28]何华, 康绍忠, 曹红霞. 灌溉施肥部位对玉米同化物分配和水分利用的影响. 西北植物学报, 2003, 23: 1458–1461



He H, Kang S Z, Cao H X. Effect of fertigation depth on dry matter partition and water use efficiency of corn. Acta Bot Boreali-Occident Sin, 2003, 23: 1458–1461 (in Chinese with English abstract)

[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[12] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[13] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[14] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[15] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!