欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (01): 141-148.doi: 10.3724/SP.J.1006.2017.00141

• 研究简报 • 上一篇    下一篇

外源ABA对低温胁迫下玉米幼苗内源激素含量及Asr1基因表达的调节

李馨园1,2,**,杨晔1,**,张丽芳1,左师宇1,李丽杰1,焦健1,李晶1*   

  1. 1东北农业大学农学院,黑龙江哈尔滨 150030:2黑龙江省农科院齐齐哈尔分院,黑龙江齐齐哈尔 161006
  • 收稿日期:2015-12-04 修回日期:2016-09-18 出版日期:2017-01-12 网络出版日期:2016-09-27
  • 通讯作者: 李晶,E-mail: jingli1027@163.com, Tel: 0451-55190304
  • 基金资助:

    本研究由国家自然科学基金项目(31401320)资助。

Regulation on Contents of Endogenous Hormones and Asr1 Gene Expression of Maize Seedling by Exogenous ABA under Low-temperature Stress

LI Xin-Yuan1,2,**,YANG Ye1,**,ZHANG Li-Fang1,ZUO Shi-Yu1,LI Li-Jie1,JIAO Jian1,LI Jing1,*   

  1. 1 College of Agronomy, Northeast Agricultural University, Harbin 150030, China; 2 Qiqhaer Branch of Heilongjiang Academy of Agricultural Science, Qiqihaer 161006, China
  • Received:2015-12-04 Revised:2016-09-18 Published:2017-01-12 Published online:2016-09-27
  • Contact: 李晶,E-mail: jingli1027@163.com, Tel: 0451-55190304
  • Supported by:

    1 College of Agronomy, Northeast Agricultural University, Harbin 150030, China; 2 Qiqhaer Branch of Heilongjiang Academy of Agricultural Science, Qiqihaer 161006, China?

摘要:

脱落酸(ABA)是低温逆境下的重要信号因子,为了探讨外源ABA对低温胁迫下玉米幼苗的生长调节作用,以耐低温玉米品种久龙5号为试验材料,采用不同浓度(5、15、25、35 mg L-1) ABA于玉米三叶一心时喷雾于叶片,并进行低温梯次处理。分析处理后玉米叶片相对电导率、抗氧化酶活性及内源激素ABA、IAA的含量变化,并采用Real-time PCR明确Asr1基因表达水平变化。结果表明,低温胁迫下不同浓度外源ABA处理的玉米叶片相对电导率整体呈上升趋势,SOD和POD活性加强,15 mg L-1和25 mg L-1ABA处理的SOD活性均显著高于未应用ABA处理,玉米內源ABA和IAA合成水平上升,应用ABA后Asr1基因相对表达水平上调,其中5、15和25 mg L-1浓度处理基因表达上调显著。相关分析表明,ABA含量与Asrl基因相对表达量、SOD活性均表现为极显著正相关,与POD活性显著正相关。说明Asr1基因表达受ABA的介导调控,Asr1基因表达量的提升,也促进了内源ABA的合成,抗氧化酶活性加强,提升了应用ABA后玉米的抗低温能力。但外源ABA的介导调控具有一定浓度效应,表现为低促高抑。

关键词: 玉米, 外源ABA, Asr1基因, 低温胁迫, 内源激素

Abstract:

 

Abscisic acid (ABA) is an important signal factor under low-temperature stress. This study aimed to investigate the effect of exogenous ABA on growth regulation of maize seedlings under low-temperature stress. Maize variety “Jiulong 5” resistant to low temperature was weed with foliage spray of ABA (5, 15, 25, 35 mg L-1) at three-leaf period under varying degrees of low-temperature, to analyze relative electric conductivity, activities of autioxidant enzymes and contents variation of endogenous ABA and IAA of maize blades, as well as Asr1 gene expression level by Real-time PCR. The relative electric conductivity of maize blades showed an increasing tendency, meanwhile, activities of SOD and POD were enhanced by exogenous ABA treatments among which SOD activity was significantly higher in ABA treatments of 15 mg L-1 and 25 mg L-1 than in the control under low-temperature stress. Also the synthesis of endogenous ABA and IAA were increased significantly. The expression level of Asr1 gene significantly promoted in ABA treatments of 5, 15, and 25 mg L-1. ABA contant had a highly significant correlation with the relative expression of Asr1 gene and SOD activity and a significant correlation with POD activity. In conclusion the expression of Asr1 gene is mediated and regulated by ABA, the promotion of Asr1 gene expression also promotes the synthesis of endogenous ABA, and enhances antioxidant enzyme activities, resulting in improved maize resistance to low temperature. But the mediation and regulation of exogenous ABA have a concentration effect, showing promotion at low concentation and inhibition at high concentation.

Key words: Maize, Exogenous ABA, Asr1 gene, Low-temperature stress, Endogenous hormone

[1] 潘华盛, 张桂华, 徐南平. 20世纪80年代以来黑龙江气候变暖的初步分析. 气候与环境研究, 2003, 8: 348–355
Pan H S, Zhang G H, Xu N P. A preliminary analysis of climate warming in Heilongjiang province since the 1980 s. Climatic Environ Res, 2003, 8: 348–355 (in Chinese with English abstract)
[2] 史占忠, 贲显明, 张敬涛, 谷口利策, 宋光义. 三江平原春玉米低温冷害发生规律及防御措施. 黑龙江农业科学, 2003, (2): 7–10
Shi Z Z, Ben X M, Zhang J T, Gu K L C, Song G Y. The emerging pattern and preventive measure of maize cold damage in the Sanjiang River Plain. Heilongjiang Agric Sci, 2003, (2): 7–10 (in Chinese with English abstract)
[3] 张建平, 王春乙, 赵艳霞, 杨晓光, 王靖. 基于作物模型的低温冷害对我国东北三省玉米产量影响. 生态学报, 2012, 32: 4132–4138
Zhang J P, Wang C Y, Zhao Y X, Yang X G, Wang J. Impact evaluation of low temperature to yields of maize in Northeast China based on crop growth model. Acta Ecol Sin, 2012, 32: 4132–4138 (in Chinese with English abstract)
[4] 孙庆玲, 李培英, 孙宗玖, 阿不来提. 外施脱落酸对不同抗寒性狗牙根品种的渗透调节物质响应研究. 新疆农业大学学报, 2012, 35(2): 87–92
Sun Q L, Li P Y, Sun Z J, Abulaiti. Studies on response of spraying exogenous ABA to osmotic adjustment substance of bermudagrass varietiesa with different cold resistance. J Xinjiang Agric Univ, 2012, 35(2): 87–92 (in Chinese with English abstract)
[5] 汪月霞, 索标, 赵鹏飞, 曲小菲, 袁利刚, 赵雪娟, 赵会杰. 外源ABA对干旱胁迫下不同品种灌浆期小麦psbA基因表达的影响. 作物学报, 2011, 37: 1372–1377
Wang Y X, Suo B, Zhao P F, Qu X F, Yuan L G, Zhao X J, Zhao H J. Effect of abscisic acid treatment on psbA gene expression in two wheat cultivars during grain filling stage under drought stress. Acta Agron Sin, 2011, 37: 1372–1377 (in Chinese with English abstract)
[6] 李长宁, Srivastava M K, 农倩, 李杨瑞. 水分胁迫下外源ABA提高甘蔗抗旱性的作用机制. 作物学报, 2010, 36: 863–870
Li C N, Srivastava M K, Nong Q, Li Y R. Mechanism of tolerance to drought in sugarcane plant enhanced by foliage dressing of abscisic acid under water stress. Acta Agron Sin, 2010, 36: 863−870 (in Chinese with English abstract)
[7] Wang G J, Miao W, Wang J Y, Ma D R, Li J Q, Chen W F. Effects of exogenous abscisic acid on antioxidant system in weedy and cultivated rice with different chilling sensitivity under chilling stress. J Agron Crop Sci, 2012, 199: 200–208
[8] Bravo L A, Zúñiga G E, Alberdi M, Corcuera L J. The role of ABA in freezing tolerance and cold acclimation in barley. Physiol Plant, 1998, 103: 17–23
[9] 黄杏, 陈明辉, 杨丽涛, 张保青, 李杨瑞. 低温胁迫下外源ABA对甘蔗幼苗抗寒性及内源激素的影响. 华中农业大学学报, 2013, 32(4): 6–11
Hang X, Chen M H, Yang L T, Zhang B Q, Li Y R. Exogenous ABA of sugarcane seedling under low temperature stress hardiness and the effect of endogenous hormones. J Huazhong Agric Univ, 2013, 32(4): 6–11 (in Chinese with English abstract)   
[10] 杨东清, 王振林, 倪英丽, 尹燕枰, 蔡铁, 杨卫兵, 彭佃亮, 崔正勇, 江文文. 高温和外源ABA对不同持绿型小麦品种籽粒发育及内源激素含量的影响. 中国农业科学, 2014, 47: 2109–2125 
Yang D Q, Wang Z L, Ni Y L, Yin Y P, Cai T, Yang W B, Peng D L, Cui Z Y, Jiang W W. Effect of high temperature stress and spraying exogenous ABA post-anthesis on grain filling and grain yield in different types of stay-green wheat. Sci Agric Sin, 2014, 47: 2109–2125 (in Chinese with English abstract)
[11] 杨猛, 庄文锋, 魏湜, 顾万荣, 杨晔, 王萌, 李晶. 玉米苗期受低温胁迫蛋白表达差异研究. 核农学报, 2013, 27: 1742–1748
Yang M, Zhang W F, Wei S, Gu W R, Yang Y, Wang M, Li J. Differentially expressed proteome under low temperature stress in maize seedling. Acta Agric Nucl Sin, 2013, 27: 1742–1748 (in Chinese with English abstract)
[12] Carpentier S C, Vertomraen A, Swennen R, Witters E, Fortes C, Souza M T, Pan B. Sugar-mediated acclimation: The importance of sucrose metabolism in meristems. J Proteome Res, 2010, 9: 5038–5046
[13] Jeanneau M., Gerentes D, Foueillassarc X, Zivyd M, Vidala J, Toppand A, Perez P. Improvement of drought tolerance in maize: towards the functional validation of the Zm-Asr1 gene and increase of water use efficiency by over-expressing C4–PEPC. Biochimie, 2002, 84: 1127–1135
[14] Isabelle M H, Sebastien C C, Suzan P, Anais V H, Panis B, Swennen R, Remy S. Structure and regulation of the Asr gene family in banana. Planta, 2011, 234: 785–798
[15] Shen G, Pang Y Z, Wu W S, Deng Z X, Liu X F, Lin J, Zhao L X, Sun X F, Tang K X. Molecular cloning, characterization and expression of a novel Asr gene from Ginkgo biloba. Plant Physiol Biochem, 2005, 43: 836–843
[16] Frankel N, Carrari F, Hasson E. Evolutionary history of the Asr gene family. Gene, 2006, 37(8): 74–83
[17] Chin Y Y, Yu C C, Guang Y J, Wang C S. A lily ASR protein involves abscisic acid signaling and confers drought and salt resistance in Arabidopsis. Plant Physiol, 2005, 139: 836–846
[18] 魏湜, 金益, 张树权, 陈喜昌. 黑龙江玉米生态生理与栽培. 北京: 中国农业出版社, 2013. pp 54–60
Wei S, Jin Y, Zhang S Q, Chen X C. Heilongjiang Maize Ecological Physiology and Cultivation. Beijing: China Agriculture Press, 2013. pp 54–60 (in Chinese)
[19] 张新友, 徐静, 汤丰收, 董文召, 臧秀旺, 张忠信. 花生种间杂种胚胎发育及内源激素变化. 作物学报, 2013, 39(6): 1127–1133
Zhang X Y, Xu J, Tang F S, Dong W Z, Zang X W, Zhang Z X. Embryonic development and changes of endogenous hormones in interspecific hybrids between peanut (A. hypogaea L.) and wild arachis species. Acta Agron Sin, 2013, 39: 1127–1133 (in Chinese with English abstract)
[20] 江福英, 李延, 翁伯琦. 植物低温胁迫及其抗性生理. 福建农业学报, 2002, 17(3): 190–195
Jiang F Y, Li Y, Weng B Q. Review on physiology of chilling stress and chilling resistance of plants. Fujian J Agric Sci, 2002, 17(3): 190–195 (in Chinese with English abstract)
[21] 王玮, 张枫, 李德全. 外源ABA对渗透胁迫下玉米幼苗根系渗透调节的影响. 作物学报, 2002, 28: 121–126
Wang W, Zhang F, Li D Q. The effects of exogenous ABA on osmotic adjustment in maize roots under osmotic stress. Acta Agron Sin, 2002, 28: 121–126 (in Chinese with English abstract)
[22] 杨卫兵, 王振林, 尹燕枰, 李文阳, 李勇, 陈晓光, 王平, 陈二影, 郭俊祥, 蔡铁, 倪英丽. 外源ABA和GA对小麦籽粒内源激素含量及其灌浆进程的影响. 中国农业科学, 2011, 44: 2673–2682
Yang W B, Wang Z L, Yin Y P, Li W Y, Li Y, Chen X G, Wang P, Chen E Y, Guo J X, Cai T, Ni Y L. Effects of spraying exogenous ABA or GA on the endogenous hormones concentration and filling of wheat grains. Sci Agric Sin, 2011, 44: 2673–2682 (in Chinese with English abstract)
[23] Zhang Y, Jiang W J, Yu H J. Exogenous abscisic acid alleviates low temperature-induced oxidative damage in seedlings of Cucumis sativus L. Trans CSAE, 2012, 28: 221–228
[24] 郑莎莎, 孙传范, 孙红春, 刘连涛, 赵金峰, 李存东. 不同外源激素对花铃期棉花主茎叶生理特性的影响. 中国农业科学, 2009, 42: 4383–4389
Zheng S S, Sun C F, Sun H C, Liu L T, ,Zhao J F, Li C D. Effects of different exogenous hormones on physiological characteristics of main stem leaves at flower and boll stage in cotton. Sci Agric Sin, 2009, 42: 4383–4389 (in Chinese with English abstract)
[25] Iqbal M, Ashraf M, Rehman S, Rha E S. Does polyamine seed pretreatment modulate growth and levels of some plant growth regulators in hexaploid wheat (Triticum aestivum L.) plants under salt stress? Bot Stud, 2006, 47: 239–250
[26] Gomez C A, Arbona V, Jacas J, Primo M E, Talon M. Abscisic acid reduces leaf abscission and increases salt tolerance in citrus plants. Plant Growth Regul, 2003, 21: 234–240
[27] 白洁. 外源生长调节物质对亚低温下番茄幼苗生理特性的影响. 中国农业科学院硕士学位论文, 北京, 2007
Bai J. Effect of Plant Growth Regulator on Tomato Seedlings under Sub-optima Temperature. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China 2007 (in Chinese with English abstract)
[28] Huang J C, Lin S M, Wang C S. A pollen-specific and desiccation associated transcript in Lilium longiflorum during development and stress. Plant Cell Physiol, 2000, 41: 477–485
[29] 程维舜, 孙玉宏, 曾红霞, 杜念华, 施先锋, 蔡新忠. ASR蛋白与植物的抗逆性研究进展. 园艺学报, 2013, 40: 2049–2057
Cheng W S, Sun Y H, Zeng H X, Du N H, Shi X F, Cai X Z. ASR protein and plant stress tolerance. Acta Hortic Sin, 2013, 40: 2049–2057 (in Chinese with English abstract)
[30] Cortés A J, Chavarro M C, Madriñán S, This D, Blair M W. Molecular ecology and selection in the drought related Asr gene polymorphisms in wild and cultivated common bean (Phaseolus vulgaris L.). BMC Genet, 2012, 13: 58
[31] Goldgur Y, Rom S, Ghirlando R, Shkolnik D, Shadrin N, Konrad Z, Bar-Zvi D. Desiccation and zinc binding induce transition of tomato abscisic acid stress ripening 1, a water stress and salt stress-regulated plant-specific protein, from unfolded to folded state. Plant Physiol, 2007, 143: 617–628
[32] Maskin L, Maldonado S, Iusem N D. Tomato leaf spatial expression of stress-induced Asr genes. Mol Biol Rep, 2008, 35: 501–505
[33] Veeraragavan P, Dilip M A L. Expression analysis of a gene family in loblolly pine (Pinus taeda L.) induced by water deficit stress. Plant Mol Biol, 1997, 35: 801–807
[34] 杨晔, 李晶, 顾万荣, 魏湜. Asr基因家族的研究进展. 作物杂志, 2013, (3): 7–11
Yang Y, Li J, Gu W R, Wei S. Advances in the research of Asr gene family. Crops, 2013, (3): 7–11 (in Chinese with English abstract)

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!