欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (10): 1434-1447.doi: 10.3724/SP.J.1006.2017.01434

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

超级稻品种中嘉早17高产相关性状的QTL定位

胡大维1,**,圣忠华1,**,陈  炜1,2,李潜龙1,2,魏祥进1,邵高能1,焦桂爱1,王建龙2,胡培松1,2,谢黎虹1,*,唐绍清1,*   

  1. 1农业部水稻生物学与遗传育种重点实验室 / 水稻生物学国家重点实验室 / 中国水稻研究所, 浙江杭州 310006;2湖南农业大学农学院,湖南长沙 410128
  • 收稿日期:2017-01-18 修回日期:2017-05-10 出版日期:2017-10-12 网络出版日期:2017-05-22
  • 通讯作者: 唐绍清, E-mail: sqtang@126.com
  • 基金资助:

    本研究由浙江省科技计划面上项目(2015C32045),国家自然科学基金青年基金项目(31501285),中央级公益性科研院所基本科研业务专项基金(2014RG002-1),国家重点研发计划项目(2016YFD0101801)和国家转基因生物新品种培育重大专项(2016ZX08001006)资助。

Identification of QTLs Associated with High Yield of Super Rice Variety Zhongjiazao 17

HU Da-Wei1,**, SHENG Zhong-Hua1,**, CHEN Wei1,2, LI Qian-Long1,2, WEI Xiang-Jin1, SHAO Gao-Neng1, XIE Li-Hong1, JIAO Gui-Ai1, WANG Jian-Long2, HU Pei-Song1,2, TANG Shao-Qing1,*   

  1. 1 Key Laboratory of Rice Biology and Genetic Breeding of Ministry of Agriculture, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; 2 Agricultural College of Hunan Agricultural University, Changsha 410128, China
  • Received:2017-01-18 Revised:2017-05-10 Published:2017-10-12 Published online:2017-05-22
  • Contact: Kang shaoqing, E-mail: sqtang@126.com
  • Supported by:

    This research was financially supported by Zhejiang Science and Technology Projects (2015C32045), China Natural Science Foundation (31501285), the Central Level, Non-profit, Scientific Research Institute Basic R and D Operations Special Fund (2014RG002-1), the National Key Research and Development Program of China (2016YFD0101801), and the National Major Project for Developing New GM Crops (2016ZX08001006).

摘要:

水稻产量事关粮食安全,对水稻高产基因的进一步挖掘意义重大。本研究采用花药培养技术,构建了包含101个株系的中嘉早17×D50的加倍单倍体群体(DH群体)。考查海南、杭州高产田块和杭州山区低产田块3种种植环境下DH群体各株系、亲本中嘉早17和D50的有效穗数、每穗粒数、结实率以及千粒重等产量相关性状,同时构建DH群体的遗传连锁图谱。QTL定位分析表明,3种种植环境下共检测到74个具有显著加性效应的QTL,其贡献率变幅为3.7%~43.2%,分布于水稻12条染色体。其中,qPH1-1qFLL12在3种种植环境下均被检测到,其贡献率分别为8.9%、24.2%、43.2%和16.6%、17.9%、18.9%。此外,qPH3、qFLL10-2、qFLW11-1、qPL11、qGNP11、qSSR3以及qTGW5-1 7个QTL在其中2种种植环境下被同时检测到,其贡献率变幅为7.4%~42.2%。QTL×环境互作分析表明,仅qPH1-1、qFLW2、qEPP1qTGW5-1 4个QTL存在显著的加性×环境互作效应。进一步对qTGW5-1定位区间所包含的GW5测序分析表明,高产株系和低产株系的GW5等位基因分别来自亲本中嘉早17和D50,这与检测到的qTGW5-1的加性效应来自亲本中嘉早17相符。本研究为今后水稻产量相关基因的进一步挖掘以及借助分子聚合育种培育超高产品种提供了理论依据和技术支撑。

关键词: 产量性状, QTL定位, DH群体, 中嘉早17, 水稻

Abstract:

Rice yield has obvious effect on national food security. The further excavation of high yield related genes is of great significance. In this research, a doubled haploid population (DH population) of Zhongjiazao 17 (YK17) × D50 was constructed by using the anther culture technique. The yield related traits including effective panicles per plant, grain number per panicle, seed setting rate and 1000-grain weight in three different planting environments (Lingshui Hainan planting environment, high yield field in Hangzhou planting environment, low yield field in Hangzhou planting environment) were examined. Further, genetic linkage map of the DH population was constructed. A total of 74 QTLs for yield related traits were detected by QTL mapping, these QTLs were distributed on all the 12 chromosomes of rice with the contribution rate ranging from 3.7% to 43.2%. Among these QTLs, qPH1-1and qFLL12 were detected repeatedly in three different planting environments, and the contribution rate of them was 8.9%, 24.2%, 43.2% and 16.6%, 17.9%, 18.9%, respectively. In addition, qPH3, qFLL10-2, qFLW11-1, qPL11, qGNP11, qSSR3, and qTGW5-1 were detected repeatedly in two different planting environments with the contribution rate ranging from 7.4% to 42.2%. The analysis of QTL × environment interaction showed that qPH1-1, qFLW2, qEPP1,and qTGW5-1 had significant additive × environment interaction effects. GW5 sequencing, located in qTGW5-1, indicated that GW5 alleles of high yield lines and low yield lines were inherited from the parents YK17 and D50, respectively, which was consistent with that the additive effect of qTGW5-1 derived from YK17. This research provides theoretical basis and technical support for further excavation of rice yield related genes and breeding super high yield varieties by using molecular polymerization breeding.

Key words: Yield related traits, QTL mapping, DH population, Zhongjiazao17, Rice

[1] 许凌, 张亚东, 朱镇, 赵凌, 赵庆勇, 张巧凤, 王才林. 不同年份水稻产量性状的QTL分析. 中国水稻科学, 2008, 22: 370–376
Xu L, Zhang Y D, Zhu Z, Zhao L, Zhao Q Y, Zhang Q F, Wang C L. Dissection of QTLs in two years for yield component traits in rice (Oryza sativa). Chin J Rice Sci, 2008, 22: 370–376 (in Chinese with English abstract)
[2] 占小登, 于萍, 林泽川, 陈代波, 沈希宏, 张迎信, 付君林, 程式华, 曹立勇. 利用大粒籼/小粒粳重组自交系定位水稻生育期及产量相关性状QTL. 中国水稻科学, 2014, 28: 570–580
Zhan X D, Yu P, Lin Z C, Chen D B, Shen X H, Zhang Y X, Fu J L, Cheng S H, Cao L Y. QTL mapping of heading date and yield-related traits in rice using a recombination inbred lines (RILs) population derived from BG1/XLJ. Chin J Rice Sci, 2014, 28: 570–580 (in Chinese with English abstract)
[3] 王兰, 李智, 郑杏梅, 蔡英钦, 罗敏, 聂益勇. 普通野生稻矮化突变体的株高与分蘖基因的QTL定位及主效基因的遗传分析. 华北农学报, 2014, 29: 5–9
Wang L, Li Z, Zheng X M, Cai Y Q, Luo M, Nie Y Y. Mapping quantitative trait loci associated with height and tillers of Oryza rufipogon Griff. dwarf mutant and genetic analysis of major quantitative locus. Acta Agric Boreali-Sin, 2014, 29: 5–9 (in Chinese with English abstract)
[4] 陈明亮, 熊焕金, 胡兰香, 罗世友, 刘志辉, 肖叶青. 水稻产量相关数量性状基因研究进展. 江西农业学报, 2014, 26: 16–20
Chen M L, Xiong H J, Hu L X, Luo S Y, Liu Z H, Xiao Y Q. Research advances in genes of yield-related quantitative traits in rice. Acta Agric Jiangxi, 2014, 26: 16–20 (in Chinese with English abstract)
[5] Li Y B, Fan C C, Xing Y Z, Jiang Y H, Luo L J, Sun L, Shao D, Xu C J, Li X H, Xiao J H, He Y Q, Zhang Q F. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet, 2011, 43: 1266–1269
[6] Yan S, Zou G H, Li S J, Wang H, Liu H Q, Zhai G W, Guo P, Song H M, Yan C J, Tao Y Z. Seed size is determined by the combinations of the genes controlling different seed characteristics in rice. Theor Appl Genet, 2011, 123: 1173–1181
[7] Wang S K, Wu K, Yuan Q B, Liu X Y, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q, Zhang G Q, Fu X D. Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet, 2012, 44: 950–954
[8] Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761–767
[9] Wei X J, Xu J F, Guo H G, Jiang L, Chen S H, Yu C Y, Zhou Z L, Hu P S, Zhai H Q, Wan J M. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol, 2010, 153: 1747–1758
[10] Tan L B, Li X R, Liu F X, Sun X Y, Li C G, Zhu Z F, Fu Y C, Cai H W, Wang X K, Xie D X, Sun C Q. Control of a key transition from prostrate to erect growth in rice domestication. Nat Genet, 2008, 40:1360–1364
[11] Jin J, Huang W, Gao J P, Yang J, Shi M, Zhu M Z, Luo D, Lin H X. Genetic control of rice plant architecture under domestication. Nat Genet, 2008, 40: 1365–1369
[12] Jiao Y Q, Wang Y H, Xue D W, Wang J, Yan M X, Liu G F, Dong G J, Zeng D L, Lu Z F, Zhu X D, Qian Q, Li J Y. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet, 2010, 42: 541–544
[13] Miura K, Ikeda M, Matsubara A, Song X J, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet, 2010, 42: 545–549
[14] Liu W, Zhang D C, Tang M F, Li D Y, Zhu Y X, Zhu L H, Chen C Y. THIS1 is a putative lipase that regulates tillering, plant height, and spiklelet fertility in rice. J Exp Bot, 2013, 64: 4389–4402
[15] Ashikari M, Sakakibara H, Lin S Y, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309: 741–745
[16] Huang X Z, Qian Q, Liu Z B, Sun H Y, He S Y, Luo D, Xia G M, Chu C C, Li J Y, Fu X D. Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet, 2009, 41: 494–497
[17] Zhou Y, Zhu J Y, Li Z Y, Yi C D, Liu J, Zhang H G, Tang S Z, Gu M H, Liang G H. Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication. Genetics, 2009, 183: 315–324
[18] Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112: 1164–1171
[19] Weng J F, Gu S H, Wan X Y, Gao H, Guo T, Su N, Lei C L, Zhang X, Cheng Z J, Guo X P, Wang J L, Jiang L, Zhai H Q, Wan J M. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res, 2008, 18: 1199–1209
[20] Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2013, 45: 707–711
[21] Si L Z, Chen J Y, Huang X H, Gong H, Luo J H, Hou Q Q, Zhou T Y, Lu T T, Zhu J J, Shangguan Y Y, Chen E W, Gong C X, Zhao Q, Jing Y F, Zhao Y, Li Y, Cui L L, Fan D L, Lu Y Q, Weng Q J, Wang Y C, Zhan Q L, Liu K Y, Wei X H, An K, An G, Han B. OsSPL13 controls grain size in cultivated rice. Nat Genet, 2016, 48: 447–456
[22] 穆平, 黄超, 李君霞, 刘立峰, 刘弋菊, 李自超. 低磷胁迫下水稻产量性状变化及其QTL定位. 作物学报, 2008, 34: 1137–1142
Mu P, Huang C, Li J X, Liu L F, Liu U J, Li Z C. Yield trait variation and QTL mapping in a DH population of rice under phosphorus deficiency. Acta Agron Sin, 2008, 34: 1137–1142 (in Chinese with English abstract)
[23] 杨小林, 戚华雄, 殷得所, 曾凡松, 张舒, 喻大昭. 水稻稻瘟病抗性QTL的定位分析. 植物病理学报, 2012, 42: 600–607
Yang X L, Qi H X, Yin D S, Zeng F S, Zhang S, Yu D Z. Mapping QTLs for rice blast resistance in DH line derived from Muwanggu and E’ wan8. Acta Phytopathol Sin, 2012, 42: 600–607 (in Chinese with English abstract)
[24] 王小虎, 方云霞, 祝阳舟, 潘斌清, 余海平, 张栋, 曾大力, 胡江, 钟卫国, 俞良, 端木银熙, 梁国华, 钱前. 水稻水培抗倒伏相关性状的QTL分析. 核农学报, 2016, 30: 850–858
Wang X H, Fang Y X, Zhu Y Z, Pan B Q, Yu H P, Zhang D, Zeng D L, Hu J, Zhong W G, Yu L, Duan-Mu Y X, Liang G H, Qian Q. Identification of QTLs associated with hydroponics resistance to lodging in rice. J Nuclear Agric Sci, 2016, 30: 850–858 (in Chinese)
[25] 罗炬, 邵高能, 魏祥进, 陈明亮, 唐绍清, 焦桂爱, 谢黎虹, 胡培松. 一个控制水稻株高QTL qPH3的遗传分析. 中国水稻科学, 2012, 26: 417–422
Luo J, Shao G N, Wei X J, Chen M L, Tang S Q, Jiao G A, Xie L H, Hu P S. Genetic analysis of a OTL qPH3 for plant height in rice. Chin J Rice Sci, 2012, 26: 417–422 (in Chinese with English abstract)
[26] van Ooijen J W. Join Map 4, Software for the Calculation of Genetic Linkage Maps in Experimental Populations. Wageningen, Netherlands, 2006
[27] Wang S, Basten C J, Zeng Z B. Windows QTL Cartographer 2.5 Department of Statistics. Raleigh, USA: North Carolina State University, 2006
[28] McCouch S R. Gene nomenclature system for rice. Rice, 2008, 1: 72–84
[29] 赵建国, 蒋开锋, 杨莉, 杨乾华, 万先齐, 曹应江, 游书梅, 罗婧, 张涛, 郑家奎. 水稻产量相关性状QTL定位. 中国水稻科学, 2013, 27: 344–352
Zhao J G, Jiang K F, Yang L, Yang Q H, Wan X Q, Cao Y J, You S M, Luo J, Zhang T, Zheng J K. QTL mapping for yield related components in a RIL population of rice. Chin J Rice Sci, 2013, 27: 344–352 (in Chinese with English abstract)
[30] Liu G F, Yang J, Zhu J. Mapping QTL for biomass yield and its components in rice (Oryza sativa). Acta Genet Sin, 2006, 33: 607–616
[31] 郭龙彪, 罗利军, 邢永忠, 徐才国, 梅捍卫, 王一平, 钟代彬, 钱前, 应存山, 石春海. 水稻重要农艺性状的两年QTL分析. 中国水稻科学, 2003, 17: 211–218
Guo L B, Luo L J, Xing Y Z, Xu C G, Mei H W, Wang Y P, Zhong D B, Qian Q, Ying C S, Shi C H. Dissection of QTLs in two years for important agronomic traits in rice (Oryza sativa L.). Chin J Rice Sci, 2003, 17: 211–218 (in Chinese with English abstract)
[32] 邓家耀. 水稻光合与产量相关性状的QTL分析. 福建农林大学硕士学位论文, 福建福州, 2007
Deng J Y. QTL Mapping Associated with the Traits of Photosynthesis and Yield Components in Rice (Oryza sativa L.). MS Thesis of Fujian Agriculture and Forestry University, Fuzhou, China, 2007 (in Chinese with English abstract)
[33] 冯跃, 翟荣荣, 林泽川, 曹立勇, 魏兴华, 程式华. 不同供氮水平下水稻产量性状的QTL分析. 中国水稻科学, 2013, 27: 577–584
Feng Y, Zhai R R, Lin Z C, Cao L Y, Wei X H, Cheng S H. QTL Analysis for yield traits in rice under two nitrogen levels. Chin J Rice Sci, 2013, 27: 577–584 (in Chinese with English abstract)
[34] 苏相文. 水稻重组自交系产量及其相关性状的QTL分析. 四川农业大学硕士学位论文, 四川成都, 2010
Su X W. QTL Analysis for Rice Yield and Its Related Traits by Recombinant Inbred Line. MS Thesis of Sichuan Agricultural University, Chengdu, China, 2010 (in Chinese with English abstract)
[35] 文飘. 东乡野生稻产量性状的QTL分析. 江西师范大学硕士学位论文, 江西南昌, 2012
Wen P. QTL Analysis for Controlling Yield Traits in Dongxiang Wild Rice (Oryza rufipogon Griff.). MS Thesis of Jiangxi Normal University, Nanchang, China, 2012 (in Chinese with English abstract)
[36] 杨益善, 邓启云, 陈立云, 邓化冰, 庄文, 熊跃东. 野生稻高产QTL导入晚稻恢复系的增产效果. 分子植物育种, 2006, 4: 59-64
Yang Y S, Deng Q Y, Chen L Y, Deng H B, Zhuang W, Xiong Y D. Yield-increasing effect of yield-enhancing QTL from Oryza Rufipogon after being transferred into late-season rice restorer line. Mol Plant Breed, 2006, 4: 59-64 (in Chinese with English abstract)
[37] 邓化冰, 邓启云, 陈立云, 杨益善, 熊跃东, 孔凡娜, 王斌, 袁隆平. 马来西亚普通野生稻增产QTL的分子标记辅助选择及其育种效果. 中国水稻科学, 2007, 21: 605-611
Deng H B, Deng Q Y, Chen L Y, Yang Y S, Xiong Y D, Kong F N, Wang B, Yuan L P. Marker-assisted selection for yield-enhancing QTLs in the Progeny of “9311×Oryza rufipogon” and its effects in rice breeding. Chin J Rice Sci, 2007, 21: 605-611 (in Chinese with English abstract)

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[8] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[9] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[10] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[11] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[12] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!