欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (12): 1945-1957.doi: 10.3724/SP.J.1006.2020.03019

• 耕作栽培·生理生化 • 上一篇    下一篇

品种搭配对湖北省玉米-晚稻复种产量及资源效率的影响

刘志辉1(), 潘高峰2, 陈文1, 秦明广1, 曹凑贵1, 常昌龙3, 展茗1,*()   

  1. 1华中农业大学植物科学技术学院 / 农业农村部长江中游作物生理生态与耕作重点实验室, 湖北武汉 430070
    2襄阳市农业科学院, 湖北襄阳 441057
    3荆门市土壤肥料工作站, 湖北荆门 448000
  • 收稿日期:2020-03-24 接受日期:2020-07-02 出版日期:2020-08-11 网络出版日期:2020-08-11
  • 通讯作者: 展茗
  • 基金资助:
    国家重点研发计划项目(2016YFD0300308);国家公益性行业(农业)科研专项(201503122)

Effects of varieties collocation between crop seasons on the yield and resource use efficiency of maize-late rice cropping in Hubei province

Zhi-Hui LIU1(), Gao-Feng PAN2, Wen CHEN1, Ming-Guang QIN1, Cou-Gui CAO1, Chang-Long CHANG3, Ming ZHAN1,*()   

  1. 1Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River Ministry of Agriculture and Rural Affairs / College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
    2Xiangyang Academy of Agricultural Sciences, Xiangyang 441057, Hubei, China
    3Jingmen Soil and Fertilizer Station Jingmen 448000, Hubei, China
  • Received:2020-03-24 Accepted:2020-07-02 Published:2020-08-11 Published online:2020-08-11
  • Contact: Ming ZHAN
  • Supported by:
    National Key Research and Development Program of China(2016YFD0300308);Special Fund for Agro-scientific Research in the Public Interest of China(201503122)

摘要:

玉米-晚稻复种(M-R)能协同口粮与饲料用量生产, 近年来开始在长江中游地区发展, 其周年丰产高效技术还有待系统研究与完善, 而合理的前后季品种搭配是发挥玉-稻产量潜力的重要基础。因此, 本研究选取不同的玉米与晚稻品种, 于2015年与2017年在湖北省不同区域观测了不同品种搭配模式产量表现与资源利用效率。结果表明, 不同热量条件下品种搭配模式对M-R周年产量与资源生产效率影响显著。积温较多时以中熟玉米搭配晚籼稻品种周年产量与光、热、水资源效率具有明显优势; 反之则以早熟玉米品种搭配晚籼稻产量与资源生产效率较高。各品种搭配模式对周年有效积温(GDD≥10°C)的利用率可达95.6%~100.0%, 且前后季积温分配比值(TR)与M-R周年相对产量呈显著的非线性关系; 当GDD≥10°C利用率为97.0%~98.5%且TR为1.06~1.08时, M-R可获得较高的周年产量。因此, 可依据当地的热量资源条件及合理TR比值, 进行玉米、晚稻品种选择搭配。据此, 湖北省南部积温较高的区域宜选择生育期125 d以内的高产玉米品种与全生育期140 d以内的晚稻品种进行搭配; 而在积温相对偏少的中北部区域, 宜选择生育期120 d以内的高产玉米品种与全生育期130 d以内的晚稻品种进行搭配。

关键词: 玉-稻复种, 品种搭配, 产量, 气候资源季间分配, 资源生产效率

Abstract:

Maize-late rice cropping (M-R) is considered to coordinate the production of food and feed crop. In recent years, M-R has begun to develop in the middle reaches of the Yangtze River. However, technologies have not been systematically studied and improved for its higher yield and higher resources use efficiency. Especially, a reasonable collocation of varieties between maize and late rice seasons is an important basis to realize the yield potential of M-R, and still is under evaluation. In this study, different maize and late rice varieties were selected and collocated to different M-R modes. Their yield performance and use efficiency of resources were detected in different regions of Hubei province in 2015 and 2017. The results showed that under different heat conditions, the varieties collocation modes had significant effects on the annual yield of M-R and the production efficiency of resources. The modes of medium maturity maize-late indica rice cropping had obviously higher annual yield and resource production efficiency under higher accumulated temperature (GDD≥10°C); on the contrary, the annual yield and resource production efficiency of the modes of early maturity maize-late indica rice cropping were higher under lower GDD≥10°C. The utilization percentage of the annual effective GDD≥10°C of each varieties combination mode could reach 95.6%-100.0%, and the distribution ratio of GDD≥10°c between previous and subsequent season (TR) had a significant non-linear relationship with the relative annual yield of M-R. When the utilization percentage of GDD≥10°C was 97.0%-98.5% and TR was 1.06-1.08, M-R could obtain highest annual yield. Therefore, suitable varieties of maize and late rice could be selected according to the local heat resource and reasonable TR. In summary, high-yield maize varieties with a growth period of 125 days and late rice varieties with a growth period of 140 days should be selected for the southern regions with higher GDD≥10°C, while high-yield maize varieties with a growth period of 120 days and late rice varieties with a growth period of 130 days should be selected for the middle and northern regions with relatively lower GDD≥10°C in Hubei province.

Key words: maize-rice double cropping, varieties collocation, yield, seasonal distribution of climate resources, resource production efficiency

表1

各试验点土壤基本理化性质"

试验地
Experimental plots
有机质
Organic matter
(g kg-1)
全氮
Total nitrogen
(g kg-1)
全磷
Total phosphorus
(g kg-1)
全钾
Total potassium
(g kg-1)
速效磷
Available phosphorus
(mg kg-1)
可交换性钾
Exchangeable potassium
(mg kg-1)
漳河 Zhanghe 22.8 1.27 0.69 4.96 13.38 88.80
屈家岭 Qujialing 25.2 1.44 0.59 18.02 9.83 179.60
梅家墩 Meijiadun 20.59 0.65 1.51 7.67 24.86 71.75

表2

各试验点选用的玉米与晚稻品种及其搭配模式"

试验年份及地点
Experimental years and plots
作物品种
Crop variety
早熟玉米-籼稻
EM-IR
早熟玉米-粳稻
EM-JR
中熟玉米-籼稻
MM-IR
中熟玉米-粳稻
MM-JR
2015漳河
Zhanghe in 2015
春玉米品种
Varieties of spring maize
郑单958
Zhengdan 958
郑单958
Zhengdan 958
汉单777
Handan 777
汉单777
Handan 777
晚稻品种
Varieties of late rice
天两优953
Tianliangyou 953
黄华占
Huanghuazhan
鄂晚17
Ewan 17
天源粳036
Tianyuanjing 036
天两优953
Tianliangyou 953
黄华占
Huanghuazhan
鄂晚17
Ewan 17
天源粳036
Tianyuanjing 036
2017屈家岭
Qujialing in 2017
春玉米品种
Varieties of spring maize
兴垦6号
Xingken 6
兴垦6号
Xingken 6
登海618
Denghai 618
登海618
Denghai 618
晚稻品种
Varieties of late rice
天两优953
Tianliangyou 953
鄂晚17
Ewan 17
天两优953
Tianliangyou 953
鄂晚17
Ewan 17
2017梅家墩
Meijiadun in 2017
春玉米品种
Varieties of spring maize
兴垦6号
Xingken 6
兴垦6号
Xingken 6
登海618
Denghai 618
登海618
Denghai 618
晚稻品种
Varieties of late rice
天两优953
Tianliangyou 953
鄂晚17
Ewan 17
天两优953
Tianliangyou 953
鄂晚17
Ewan 17

表3

不同品种搭配模式下春玉米、晚稻的生育期与周年生长期"

试验地点
Experimental plots
品种搭配模式
Modes of varieties collocation
春玉米
Spring maize
晚稻
Late rice
周年生长日数
Annual growing period (d)
玉米品种
Maize varieties
水稻品种
Rice varieties
播种期-吐丝期-成熟期
Sowing-silking-maturity
(month/date)
全生育期
Whole growth period (d)
播种-移栽-齐穗期-成熟期
Sowing-transplanting-heading-maturity
(month/date)
本田生长期
Growth days after transplanting (d)
潜在生长天数
Potential growing days
实际生长天数
Actual growing period
漳河
Zhanghe in 2015
郑单958
Zhengdan 958
鄂晚17 Ewan 17 3/27-6/8-7/25 120 6/15-7/28-9/15-11/7 103 225 223
天源粳036 Tianyuangeng 03 6/15-7/28-9/7-11/5 101 221
天两优953 Tianliangyou 953 6/15-7/28-9/7-10/28 92 212
黄华占Huanghuazhan 6/15-7/28-9/27- immaturity
汉单777
Handan 777
鄂晚17 Ewan 17 3/27-6/12-7/30 126 6/15-7/31-9/17-11/7 99 225
天源粳036 Tianyuangeng 03 6/15-7/31-9/8-11/5 97 223
天两优953 Tianliangyou 953 6/15-7/31-9/8-10/28 88 214
黄华占Huanghuazhan 6/15-7/31-10/7- immaturity
屈家岭
Qujialing in 2017
兴垦6号
Xingken 6
鄂晚17 Ewan 17 3/25-6/3-7/15 113 6/18-7/22-9/12-11/9 110 227 223
天两优953 Tianliangyou 953 6/18-7/22-9/2-11/4 105 218
登海618
Denghai 618
鄂晚17 Ewan 17 3/25-6/10-7/22 120 6/24-7/26-9/12-11/9 106 226
天两优953 Tianliangyou 953 6/24-7/26-9/2-11/4 101 221
梅家墩
Meijiadun in 2017
兴垦6号
Xingken 6
鄂晚17 Ewan 17 3/28-6/7-7/16 111 6/19-7/24-9/9-11/3 102 236 222
天两优953 Tianliangyou 953 6/19-7/24-8/30-10/25 92 203
登海618
Denghai 618
鄂晚17 Ewan 17 3/28-6/11-7/20 116 6/25-7/28-9/9-11/6 100 216
天两优953 Tianliangyou 953 6/25-7/28-8/30-10/27 90 206

图1

试验期间旬平均气温(a)、降水(b)、光辐射(c)动态及其在两作物季间的分配 ZH: 漳河; QJL: 屈家岭; MJD: 梅家墩; AT: 日均温; GDD: ≥10°C有效积温; P: 旬累积降水量; AP: 作物季累积降雨量; R: 旬累积光辐射; AR: 作物季累积光辐射。"

表4

不同品种搭配模式下春玉米与晚稻的生物量、产量及其构成"

试验地点
Experimental plots
种搭配模式Modes of varieties collocation 生物量Biomass (t hm-2) 产量构成Yield components 产量Grain Yield (t hm-2)
玉米品种
Maize varieties
水稻品种
Rice varieties
玉米
Maize
晚稻
Late rice
周年
Annual
玉米Maize 晚稻Late rice 玉米
Maize
晚稻
Late rice
周年
Annual
EN
(×104 hm-2)
GN
(No.)
GW
(g)
PN
(×104 hm-2)
GN
(No.)
GW
(g)
漳河
Zhanghe in 2015
郑单958
Zhengdan 958
鄂晚17 Ewan 17 18.94 a 13.72 a 31.66 ab 246.9 c 75.9 a 27.7 c 9.09 a 6.38 c 15.47 c
天源粳036 Tianyuangeng 03 12.95 b 31.89 a 7.55 a 385.4 b 300.6 a 355.4 a 61.3 b 28.6 c 6.58 c 15.67 c
天两优953 Tianliangyou 953 13.13 ab 32.07 a 333.5 a 76.2 a 32.5 a 9.18 a 18.27 a
黄华占Huanghuazhan 11.67 c 30.61 b 9.09 e
汉单777
Handan 777
鄂晚17 Ewan 17 19.42 a 8.92 e 28.34 d 238.7 c 70.8 ab 27.8 c 8.74 a 5.51 d 14.25 d
天源粳036 Tianyuangeng 03 10.64 d 30.06 bc 7.28 a 491.7 a 241.4 b 287.7 b 61.3 b 30.3 b 5.89 d 14.63 d
天两优953 Tianliangyou 953 13.36 ab 32.78 a 295.2 b 71.2 a 30.7 b 7.77 b 16.51 b
黄华占Huanghuazhan 10.56 d 29.98 c 8.74 e
屈家岭 Qujialing
in 2017
兴垦6号
Xingken 6
鄂晚17 Ewan 17 15.57 b 10.23 c 25.80 c 7.15 a 432.3 b 372.9 a 332.0 b 55.2 b 22.3 b 10.69 b 5.89 b 16.58 c
天两优953 Tianliangyou 953 13.29 a 28.86 ab 446.1 a 89.2 a 22.5 ab 6.69 a 17.38 b
登海618
Denghai 618
鄂晚17 Ewan 17 17.38 a 10.72 c 28.10 b 7.22 a 500.9 a 344.6 b 336.8 b 64.4 b 23.0 ab 12.28 a 6.03 ab 18.31 a
天两优953 Tianliangyou 953 12.56 b 29.54 a 473.5 a 79.7 a 24.3 a 6.51 a 18.79 a
梅家墩Meijiadun
in 2017
兴垦6号
Xingken 6
鄂晚17 Ewan 17 14.53 b 12.13 c 26.66 d 6.68 a 365.3 b 343.6 a 310.8 b 81.6 b 29.2 a 7.86 b 6.83 c 14.69 d
天两优953 Tianliangyou 953 17.66 a 32.19 bc 439.7 a 100.3 a 25.0 b 8.00 b 15.86 c
登海618
Denghai 618
鄂晚17 Ewan 17 18.34 a 13.64 b 31.98 c 6.82 a 479.7 a 308.1 b 317.5 b 88.3 b 27.4 a 9.87 a 8.28 b 18.15 b
天两优953 Tianliangyou 953 17.53 a 35.87 a 397.1 a 113.8 a 25.3 b 9.10 a 18.97 a

图2

不同玉-稻品种搭配下有效积温(GDD≥10°C)及其季间分配比(TR) ZD: 郑单958; HD: 汉单777; XK: 兴垦6号; DH: 登海618; EW: 鄂晚17; TYG: 天源粳036; TLY: 天两优953; HHZ: 黄华占。"

图3

玉米-晚稻模式前后季积温比值(TR)及周年积温利用率(TUE)与周年相对产量的关系 M-JR: 玉米搭配粳稻品种; M-IR: 玉米搭配籼稻品种。*表示P ≤ 0.05。"

表5

玉-稻系统不同品种搭配模式下资源生产效率的差异"

试验地点
Experimental plots
种搭配模式
Modes of varieties collocation
积温生产效率
Production efficiency
of AT
(kg hm-2 -1)
光能生产效率
Production efficiency
of radiation
(g hm -2 MJ-1)
降水生产效率
Production efficiency
of precipitation
(kg hm-2 mm-1)
氮肥偏生产力
Nitrogen partial factor productivity
(kg kg-1 N)
玉米
Maize
晚稻
Late rice
周年
Annual
玉米
Maize
晚稻
Late rice
周年
Annual
玉米
Maize
晚稻
Late rice
周年
Annual
玉米
Maize
晚稻
Late rice
周年
Annual
2015漳河
Zhanghe
in 2015
EM-JR 6.32 a 4.64 c 5.49 c 0.43 a 0.37 b 0.41 b 19.22 a 20.64 c 19.78 c 33.68 a 30.40 c 32.24 b
EM-IR 6.72 a 6.51 a 0.55 a 0.49 a 31.12 a 23.79 a 43.73 a 38.07 a
MM-JR 5.71 b 4.37 c 5.09 d 0.39 b 0.35 b 0.38 c 18.48 a 18.15 c 18.35 c 32.38 a 26.25 d 29.69 c
MM-IR 6.10 b 5.89 b 0.51 a 0.44 b 26.34 b 21.50 b 37.00 b 34.40 b
2017屈家岭
Qujialing
in 2017
EM-JR 7.75 a 3.88 c 5.72 c 0.49 a 0.32 c 0.41 c 22.99 b 10.26 b 15.96 c 39.59 b 28.03 b 34.53 c
EM-IR 4.47 ab 6.05 b 0.38 b 0.44 b 11.66 a 16.73 b 31.87 a 36.22 bc
MM-JR 8.06 a 4.40 b 6.32 a 0.51 a 0.37 b 0.45 ab 26.35 a 10.54 b 17.64 a 45.49 a 28.71 b 38.15 ab
MM-IR 4.83 a 6.54 a 0.42 a 0.47 a 11.38 a 18.10 a 31.02 a 39.15 a
2017梅家墩
Meijiadun
in 2017
EM-JR 5.47 b 4.37 c 4.90 d 0.42 b 0.40 c 0.41 d 15.26 b 17.56 c 16.25 b 29.12 b 32.54 c 30.61 c
EM-IR 5.32 b 5.39 c 0.52 b 0.47 c 20.57 b 17.54 b 38.11 b 33.05 b
MM-JR 6.48 a 5.60 b 6.05 b 0.50 a 0.52 b 0.51 b 19.17 a 21.29 ab 20.08 a 36.54 a 39.41 b 37.81 a
MM-IR 6.41 a 6.45 a 0.64 a 0.56 a 23.39 a 20.98 a 43.33 a 39.52 a
[1] 陈阜, 梁志杰, 陈述泉 . 多熟制的发展前景. 世界农业, 1997, ( 6):18-20.
Chen F, Liang Z J, Chen S Q . The development prospects of multi-mature. World Agric, 1997, ( 6):18-20 (in Chinese).
[2] 徐琪, 杨琳章, 董元华 . 中国稻田生态系统. 北京: 中国农业出版社, 1998. pp 172-190.
Xu Q, Yang L Z, Dong Y H. Rice Field Ecosystem in China. Beijing: China Agriculture Press, 1998. pp 172-190(in Chinese).
[3] 杨滨娟, 孙丹平, 张颖睿, 黄国勤 . 长江中游地区水旱复种轮作模式资源利用率比较研究. 中国生态农业学报, 2018,26:1197-1205.
Yang B J, Sun D P, Zhang Y R, Huang G Q . Comparison of resources use efficiencies among paddy-upland multi-crop rotation systems in the middle reaches of Yangtze River. Acta Eco-Agric Sin, 2018,26:1197-1205 (in Chinese with English abstract).
[4] 刘闯, 陈防, 刘毅, 李志国, 张过师, 谢娟 . 3种水旱两熟轮作制养分运筹研究进展. 中国农学通报, 2016,32(36):198-204.
Liu C, Chen F, Liu Y, Li Z G, Zhang G S, Xie J . Research progress of nutrient management in three paddy-upland rotating systems. Agric Sci Bull Sin, 2016,32(36):198-204 (in Chinese with English abstract).
[5] 侯方舟, 屠乃美, 何康, 王靖渊, 付小红, 杨旭初, 张清壮 . 南方双季稻区冬种绿肥对土壤质量的影响研究进展. 作物研究, 2015,29:682-686.
Hou F Z, Tu N M, He K, Wang J Y, Fu X H, Yang X C, Zhang Q Z . Research progress in the effect of winter planting-green manure on double cropping rice system of south. Crop Res Sin, 2015,29:682-686 (in Chinese with English abstract).
[6] 孙艳妮, 程林, 李昌新 . 我国粮食安全的区域性和结构性差异. 江苏农业科学, 2010, ( 5):524-526.
Sun Y N, Cheng L, Li C X . Regional and structural differences of food security in China. Jiangsu Agric Sci, 2010, ( 5):524-526 (in Chinese).
[7] 展茗, 赵明, 刘永忠, 徐尚忠 . 湖北省玉米产需矛盾及提升玉米生产科技水平对策. 湖北农业科学, 2010,49:802-806.
Zhan M, Zhao M, Liu Y Z, Xu S Z . Enhance maize production technology, alleviate the contradiction between production and demand of maize in Hubei province. Hubei Agric Sci, 2010,49:802-806 (in Chinese with English abstract).
[8] 袁建华, 颜伟, 陈艳萍, 张跃中 . 南方丘陵生态区玉米生产现状及发展对策. 玉米科学, 2003, ( 专刊):29-31.
Yuan J H, Yan W, Chen Y P, Zhang Y Z . Production situation and development strategies of maize in southern hill ecological region. J Maize Sci, 2003, ( special):29-31 (in Chinese with English abstract)
[9] 李淑娅, 田少阳, 袁国印, 葛均筑, 徐莹, 王梦影, 曹凑贵, 翟中兵, 凌霄霞, 展茗, 赵明 . 长江中游不同玉稻种植模式产量及资源利用效率的比较研究. 作物学报, 2015,41:1537-1547.
doi: 10.3724/SP.J.1006.2015.01537
Li S Y, Tian S Y, Yuan G Y, Ge J Z, Xu Y, Wang M Y, Cao C G, Zhai Z B, Ling X X, Zhan M, Zhao M . Comparison of yield and resource utilization efficiency among different maize and rice cropping systems in middle reaches of Yangtze River. Acta Agron Sin, 2015,41:1537-1547 (in Chinese with English abstract).
[10] 李小勇, 唐启源, 李迪秦, 李维科, 李海林, 蔡庆红 . 不同种植密度对超高产稻田春玉米产量性状及光合生理特性的影响. 华北农学报, 2011,26(5):174-180.
doi: 10.7668/hbnxb.2011.05.035
Li X Y, Tang Q Y, Li D Q, Li W K, Li H L, Cai Q H . Effects of different plant densities on the photosynthetic-physiological characters and yield traits in spring maize grown on super-high yielding paddy field. Acta Agric Boreali-Sin, 2011,26(5):174-180 (in Chinese with English abstract).
[11] Ali M Y, Waddington S R, Timsina J, Hodson D, Dixon J . Maize-rice cropping systems in Bangladesh: status and research needs. J Agric Sci Technol, 2009,3:35-53.
[12] 赵强基, 郑建初, 袁从, 卞新民, 李萍萍, 章熙谷 . 中国南方稻区玉米-稻种植模式的建立和实践. 江苏农业学报, 1997,13:215-219.
Zhao Q J, Zheng J C, Yuan C, Bian X M, Li P P, Zhang X G . Establishment and practice on maize-rice cropping model in Paddy Area of southern China. Jiangsu J Agric Sci, 1997,13:215-219 (in Chinese with English abstract).
[13] Timsina J, Jat M L, Majumdar K . Rice-maize systems of South Asia: current status, future prospects and research priorities for nutrient management. Plant Soil, 2010,335:65-82.
doi: 10.1007/s11104-010-0418-y
[14] Kadiyala M D M, Mylavarapu R S, Li Y C, Reddy G B, Reddy M D . Impact of aerobic rice cultivation on growth, yield, and water productivity of rice-maize rotation in semiarid tropics. Agron J, 2012,104:1757-1765.
doi: 10.2134/agronj2012.0148
[15] 李小勇 . 南方稻田春玉米-晚稻种植模式资源利用效率及生产力优势研究. 湖南农业大学博士学位论文, 湖南长沙, 2011.
Li X Y . Study on Resource Use Efficiency and Relative Advantage of Productivity in Spring Maize-Later Rice Planting Model on South China Paddy Field. PhD Dissertation of Hunan Agricultural University, Changsha, Hunan, China, 2011 (in Chinese with English abstract).
[16] Sun M, Zhan M, Zhao M, Tang L L, Qin M G, Cao C G, Cai M L, Jiang Y, Liu Z H . Maize and rice double cropping benefits carbon footprint and soil carbon budget in paddy field. Field Crops Res, 2019, 243: 107620. https://doi.org/10.1016/j.fcr.2019.107620.
doi: 10.1016/j.fcr.2019.107620
[17] 姜振辉, 杨旭, 刘益珍, 林景东, 吴杨潇影, 杨京平 . 春玉米-晚稻与早稻-晚稻种植模式碳足迹比较. 生态学报, 2019,39:8091-8099.
Jiang Z H, Yang X, Liu Y Z, Lin J D, Wu Y X Y, Yang J P . Comparison of carbon footprint between spring maize-late rice and early rice-late rice cropping system. Acta Ecol Sin, 2019,39:8091-8099 (in Chinese with English abstract).
[18] Food and Agriculture Organization of the United Nations. Save and Grow in Practice: Maize, Rice, Wheat: a Guide to Sustainable Cereal Production.[ 2016-01-18]. http://www.fao.org/publi-cations/save-and-grow/maize-rice-wheat/en/.
[19] 杨羡敏, 曾燕, 邱新法, 姜爱军 . 1960-2000年黄河流域太阳总辐射气候变化规律研究. 应用气象学报, 2005,16:243-247.
Yang X M, Zeng Y, Qiu X F, Jiang A J . The climatic change of solar radiation over the yellow river basin during 1961-2000. J Appl Meteorol, 2005,16:243-247 (in Chinese).
[20] 曲曼丽 . 农业气候实习指导. 北京: 北京农业大学出版社, 1990. pp 1-8.
Qu M L . Agro-climate Practice Instruction. Beijing: Beijing Agricultural University Publishers, 1990. pp 1-8(in Chinese with English abstract).
[21] 艾治勇, 郭夏宇, 刘文祥, 马国辉, 青先国 . 长江中游地区双季稻安全生产日期的变化. 作物学报, 2014,40:1320-1329.
doi: 10.3724/SP.J.1006.2014.01320
Ai Z Y, Guo X Y, Liu W X, Ma G H, Qing X G . Changes of safe production dates of double-season rice in the middle reaches of the Yangtze River. Acta Agron Sin, 2014,40:1320-1329 (in Chinese with English abstract).
[22] 梁红梅 . 中国种植业优势区域及其耕地保护策略. 浙江大学博士学位论文, 浙江杭州, 2011.
Liang H M . Study on the Advantage Regions of Crop Farming in China and Their Arable Land Protection Tactics. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2011 (in Chinese with English abstract).
[23] 武兰芳, 陈阜, 欧阳竹 . 种植制度演变与研究进展. 耕作与栽培, 2002, ( 3):1-5.
Wu L F, Chen F, Ou-Yang Z . Evolution and study progress of cropping system. Cult Plant, 2002, ( 3):1-5 (in Chinese).
[24] 刘建, 徐少安, 周根友, 沈锦根, 陆虎华 . 沿江稻区多熟制春玉米两段覆膜种植技术. 江苏农业学报, 2001,17:13-18.
Liu J, Xu S A, Zhou G Y, Shen J G, Lu H H . Cultivation techniques for multi-cropping spring maize with plastic film covered at two stages in paddy region along Yangtze River. Jiangsu J Agric Sci, 2001,17:13-18 (in Chinese with English abstract).
[25] 高亮之, 郭鹏, 张立中, 林武 . 中国水稻的光温资源与生产力. 中国农业科学, 1984,17:17-23.
Gao L Z, Guo P, Zhang L Z, Lin W . Light and resources and potential productive of rice in China. Sci Agric Sin, 1984,17:17-23 (in Chinese with English abstract).
[26] 吕伟生, 曾勇军, 石庆华, 潘晓华, 黄山, 商庆银, 谭雪明, 李木英, 胡水秀, 曾研华 . 近30年江西双季稻安全生产期及温光资源变化. 中国水稻科学, 2016,30:323-334.
doi: 10.16819/j.1001-7216.2016.5157
Lyu W S, Zeng Y J, Shi Q H, Pan X H, Huang S, Shang Q Y, Tan X M, Li M Y, Hu S X, Zeng Y H . Changes in safe production dates and heat-light of resources of double cropping rice in Jiangxi province in recent 30 years. Chin J Rice Sci, 2016,30:323-334 (in Chinese with English abstract).
[27] 高亮之, 李林, 金之庆 . 中国水稻的气候资源与气候生态研究. 农业科技通讯, 1986, ( 4):5-8.
Gao L Z, Li L, Jin Z Q . Climatic resources and climatic ecology research of Chinese rice. Bull Agric Sci Technol, 1986, ( 4):5-8 (in Chinese with English abstract).
[28] 邱霞, 冯新 . 双季杂交晚稻直播栽培的不利气候分析. 湖北农业科学, 2013,52:4594-4596.
Qiu X, Feng X . Analysis of unfavorable climate condition to direct-seeding culture of double-cropping hybrid late rice. Hubei Agric Sci, 2013,52:4594-4596 (in Chinese with English abstract).
[29] Xu C L, Zhao H X, Zhang P, Wang Y Y, Huang S B, Meng Q F, Wang P . Delaying wheat seeding time and maize harvest improved water use efficiency in a warm temperature continental monsoon climate. Agron J, 2018,110:1420-1429.
doi: 10.2134/agronj2017.10.0613
[30] 周宝元, 马玮, 孙雪芳, 高卓晗, 丁在松, 李从锋, 赵明 . 播/收期对冬小麦-夏玉米一年两熟模式周年气候资源分配与利用特征的影响. 中国农业科学, 2019,52:1501-1517.
doi: 10.3864/j.issn.0578-1752.2019.09.003
Zhou B Y, Ma W, Sun X F, Gao Z H, Ding Z S, Li C F, Zhao M . Effects of different sowing and harvest dates of winter wheat-summer maize under double cropping system on the annual climate resource distribution and utilization. Sci Agric Sin, 2019,52:1501-1517 (in Chinese with English abstract).
[31] 周宝元, 马玮, 孙雪芳, 丁在松, 李从锋, 赵明 . 冬小麦-夏玉米高产模式周年气候资源分配与利用特征研究. 作物学报, 2019,45:589-600.
doi: 10.3724/SP.J.1006.2019.81067
Zhou B Y, Ma W, Sun X F, Ding Z S, Li C F, Zhao M . Characteristics of annual climate resource distribution and utilization in high-yielding winter wheat-summer maize double cropping system. Acta Agron Sin, 2019,45:589-600 (in Chinese with English abstract).
[32] Liu Y E, Xie R Z, Hou P, Li S K, Zhang H B, Ming B, Long H L, Liang S M . Phenological responses of maize to changes in environment when grown at different latitudes in China. Field Crops Res, 2013,144:192-199.
doi: 10.1016/j.fcr.2013.01.003
[33] 周宝元, 葛均筑, 侯海鹏, 孙雪芳, 丁在松, 李从锋, 马玮, 赵明 . 黄淮海平原南部不同种植体系周年气候资源分配与利用特征研究. 作物学报, 2020,46:937-949.
Zhou B Y, Ge J Z, Hou H P, Sun X F, Ding Z S, Li C F, Ma W, Zhao M . Characteristics of annual climate resource distribution and utilization for different cropping systems in the south of Yellow-Huaihe-Haihe Rivers plain. Acta Agron Sin, 2020,46:937-949 (in Chinese with English abstract).
[34] 杨晓光, 刘志娟, 陈阜 . 全球气候变暖对中国种植制度可能影响: VI. 未来气候变化对中国种植制度北界的可能影响. 中国农业科学, 2011,44:1562-1570.
Yang X G, Liu Z J, Chen F . The possible effects of global warming on cropping systems in China: VI. Possible effects of future climate change on northern limits of cropping system in China. Sci Agric Sin, 2011,44:1562-1570 (in Chinese with English abstract).
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[12] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[13] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[14] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[15] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!