欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (10): 2738-2752.doi: 10.3724/SP.J.1006.2023.22065

• 耕作栽培·生理生化 • 上一篇    下一篇

新育成超短生育期品系在双季稻双直播下的产量表现及农艺特性

潘想成1,2(), 杨国栋1, 符迎迎1, 王昕钰1,3, 熊渠2, 徐乐1,4(), 彭少兵1()   

  1. 1华中农业大学作物遗传改良国家重点实验室 / 湖北洪山实验室 / 长江中游作物生理生态与耕作制度重点实验室 / 华中农业大学植物科学技术学院, 湖北武汉 430070
    2孝感市农科院, 湖北孝感 432000
    3广东省农业科学院水稻研究所 / 农业农村部华南优质稻遗传育种实验室(省部共建), 广东广州 510640
    4东北农业大学, 黑龙江哈尔滨 150030
  • 收稿日期:2022-12-14 接受日期:2023-04-17 出版日期:2023-10-12 网络出版日期:2023-04-25
  • 通讯作者: 彭少兵, E-mail: speng@mail.hzau.edu.cn; 徐乐, E-mail: xule@neau.edu.cn
  • 作者简介:E-mail: pxc18298400235@163.com
  • 基金资助:
    国家自然科学基金项目(31971845);财政部和农业农村部国家现代农业产业技术体系建设专项(水稻, CARS-01-20)

Yield performance and agronomic characteristics of a newly developed ultrashort-duration line in direct-seeded double-season rice system

PAN Xiang-Cheng1,2(), YANG Guo-Dong1, FU Ying-Ying1, WANG Xin-Yu1,3, XIONG Qu2, XU Le1,4(), PENG Shao-Bing1()   

  1. 1National Key Laboratory of Crop Genetic Improvement / Hubei Hongshan Laboratory / MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River / College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
    2Xiaogan Academy of Agricultural Sciences, Xiaogan432000, Hubei, China
    3Rice Research Institute, Guangdong Academy of Agricultural Sciences / Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, Guangdong, China
    4College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
  • Received:2022-12-14 Accepted:2023-04-17 Published:2023-10-12 Published online:2023-04-25
  • Contact: E-mail: speng@mail.hzau.edu.cn; E-mail: xule@neau.edu.cn
  • Supported by:
    National Science Foundation of China(31971845);China Agriculture Research System of MOF and MARA(Rice, CARS-01-20)

摘要:

为探究新育成超短生育期品系在双季稻双直播模式下的产量表现及关键的高产农艺特性, 本研究以超短生育期新品系CPPC18和4个对照品种(湘早籼6号、早籼615、中早39和两优152)为供试材料, 2021年在湖北黄冈进行双季稻双直播的小区试验和生产示范, 测定冠层光照拦截、干物质积累、倒伏特性、产量和产量构成因子等农艺性状。试验结果表明, 超短生育期新品系在双季稻双直播模式下早晚兼用的单季生育期在95 d以内, 周年生育期为180~183 d, 这比湘早籼6号早晚兼用增加7~9 d, 而比早籼615早晚兼用和中早39与两优152早晚搭配分别缩短4~8 d和16~22 d。在小区试验中, 超短生育期新品系CPPC18的周年产量相比其他品种增加7.2%~14.6%, 达到14.9 t hm-2。超短生育期新品系较高的周年产量主要得益于其早季较强的早发特性和晚季较高的单位面积颖花数、结实率和收获指数。此外, 超短生育期新品系具有比其他品种更强的抗倒伏能力, 这主要得益于其较低的株高、重心高度和弯曲力矩。在生产示范中, 超短生育期新品系的周年产量同样表现出明显优势, 相比其他对照品种增产12.7%~ 21.6%。综上所述, 超短生育期新品系CPPC18能够满足华中地区双季稻双直播高产稳产要求, 具有良好的推广前景。

关键词: 农艺特性, 双季稻双直播, 超短生育期, 生产示范, 产量

Abstract:

The objective of this study is to explore the yield performance and yield-related traits of a newly developed ultrashort-duration line in direct-seeded double-season rice system. An ultrashort-duration line named CPPC18, and four check cultivars (Xiangzaoxian 6, Zaoxian 615, Zhongzao 39, and Liangyou 152) were grown as the direct-seeded double-season rice in both plot-level and on-farm experiments in Hubei province in 2021. We measured canopy light interception, biomass accumulation, lodging characteristics, yield, and yield components. The result showed that the new line matured within 95 days in each season, and its annual growth duration was 180-183 days. This was 7-9 days longer than Xiangzaoxian 6, but 4-8 days and 16-22 days shorter than Zaoxian 615 and the combination of Zhongzao 39 (early season) and Liangyou 152 (late season), respectively. In the plot-level experiment, the annual yield of CPPC18 reached 14.9 t hm-2 and increased by 7.2%-14.6% compared with other cultivars. Yield advantage of CPPC18 was mainly attributed to its early vigor in early season and higher spikelets per m-2, grain filling percentage, and harvest index in late season. Besides, the lodging resistance of CPPC18 was stronger than other cultivars due to its lower plant height, the center of gravity height, and bending moment. Similarly, CPPC18 also had yield advantages over other cultivars in the on-farm experiment. The annual yield increased by 12.7%-21.6% over other cultivars. In conclusion, the newly developed ultrashort-duration line CPPC18 was suitable for direct-seeded, double-season rice system in central China for achieving high and stable yield.

Key words: agronomic characteristics, direct seeding double-season rice, ultrashort-duration, on-farm experiment, yield

表1

供试田块的土壤基本属性"

季节
Season
地点
Site
有机质
Soil organic matter (g kg-1)
全氮
Total N
(%)
速效磷
Olsen P
(mg kg-1)
速效钾
Available K
(mg kg-1)
酸碱度
pH
早季
Early season
小区试验Plot-level experiment 25.5 0.19 8.5 168.3 5.49
生产示范On-farm experiment 24.8 0.16 6.1 193.0 5.52
晚季
Late season
小区试验Plot-level experiment 28.8 0.20 8.3 232.4 5.24
生产示范On-farm experiment 26.2 0.18 5.5 99.3 5.43

表2

供试品种/系的基本信息"

品种/品系
Genotype
简写
Abbreviation
父母本
Parents
水稻类型
Varietal type
选育单位
Breeding institute
CPPC05-235-B-1-6-9 CPPC18 早籼615/湘早籼6号
Zaoxian 615/Xiangzaoxian 6
常规籼稻
Conventional indica rice
本课题组选育
Our research group
湘早籼6号
Xiangzaoxian 6
XZX6 湘矮早9号/莲塘早
Xiangaizao 9/Liantangzao
常规籼稻
Conventional indica rice
沅江市农业科学研究所
Yuanjiang Institute of Agricultural Sciences
早籼615
Zaoxian 615
ZX615 早籼14/Y134
Zaoxian 14/Y134
常规籼稻
Conventional indica rice
安徽省农业科学院水稻研究所
Rice Research Institute, Anhui Academy of Agricultural Sciences
中早39
Zhongzao 39
ZZ39 嘉育253/中组3号
Jiayu 253/Zhongzu 3
常规籼稻
Conventional indica rice
中国水稻研究所
China National Rice Research Institute
两优152
Liangyou 152
LY152 HD9802S/R152 杂交籼稻
Hybrid indica rice
湖北省种子集团有限公司, 武汉大学
Hubei Provincial Seed Group Co., Ltd,
Wuhan University

图1

水稻生长季(早、晚两季)的日平均温度和日照辐射(小区试验) 日均温和日照辐射数据来源于中国气象局国家气象信息中心。"

表3

供试品种生育期表现(小区试验)"

季节
Season
品种/品系
Genotype
营养生长期
Vegetative stage
生殖生长期
Reproductive stage
籽粒灌浆期
Ripening stage
全生育期
Total growth duration
早季 CPPC18 40 25 30 95
Early season XZX6 42 21 26 89
ZX615 43 24 30 97
ZZ39 43 28 32 103
晚季 CPPC18 28 19 38 85
Late season XZX6 31 19 34 84
ZX615 28 22 41 91
LY152 31 22 46 99

图2

供试品种在早季、晚季和周年的产量表现(小区试验) 数据是4个重复的平均值, 误差线表示标准误。XZX6: 湘早籼6号; ZX615: 早籼615; ZZ39/LY152: 中早39与两优152早晚搭配。"

表4

供试品种的日产量、产量构成因子、生物量和收获指数(小区试验)"

季节
Season
品种/品系
Genotype
日产量
Daily yield
(kg hm-2 d-1)
单位面积穗数
Panicles
(m-2)
每穗颖花数
Spikelets
panicle-1
单位面积颖花数
Spikelets
(×103 m-2)
结实率
Grain filling
(%)
千粒重
1000-grain
weight
(g)
生物量
Biomass
(t hm-2)
收获指数
Harvest index
(%)
早季 CPPC18 79.8 a 417 b 93.5 c 38.9 a 83.1 a 21.2 c 13.9 a 49.2 b
Early season XZX6 73.8 b 471 a 88.0 d 41.4 a 79.5 a 19.2 d 12.8 b 49.6 b
ZX615 78.0 a 360 c 117.3 b 42.2 a 82.6 a 23.0 b 14.3 a 56.1 a
ZZ39 79.7 a 294 d 132.6 a 38.9 a 79.0 a 24.5 a 14.7 a 51.3 b
平均Mean 77.8 A 385 A 107.9 B 40.4 A 81.1 A 22.0 A 13.9 A 51.5 A
晚季 CPPC18 85.7 a 351 ab 114.2 ab 39.4 a 79.0 a 20.8 c 12.4 a 52.2 a
Late season XZX6 77.0 b 398 a 95.3 b 37.7 a 78.9 a 19.8 d 12.9 a 45.4 b
ZX615 68.3 c 304 b 129.4 a 39.2 a 63.5 b 22.1 b 12.4 a 44.0 b
LY152 57.7 d 295 b 129.0 a 37.5 a 51.2 c 23.5 a 12.1 a 37.2 c
平均Mean 72.2 B 337 B 117.0 A 38.0 B 68.1 B 21.6 B 12.5 B 44.7 B

图3

供试品种的籽粒产量与成熟期生物量(a)、收获指数(b)的相关关系(小区试验)"

表5

供试品种不同生育阶段的作物生长速率(小区试验)"

季节
Season
品种/品系
Genotype
作物生长速率 Crop growth rate (g m-2 d-1)
播种-幼穗分化期
SS-PI
幼穗分化-齐穗期
PI-HD
齐穗-成熟期
HD-MA
全生育期
SS-MA
早季 CPPC18 5.5 a 22.6 b 20.2 a 14.6 a
Early season XZX6 4.6 b 29.0 a 18.3 a 14.3 a
ZX615 3.7 c 28.5 ab 19.4 a 14.7 a
ZZ39 3.8 c 29.3 a 15.2 a 14.2 a
平均Mean 4.4 B 27.4 A 18.3 A 14.5 A
晚季 CPPC18 6.4 b 27.0 a 14.5 a 14.6 ab
Late season XZX6 8.9 a 23.3 a 9.1 b 12.2 c
ZX615 8.6 a 25.5 a 15.9 a 15.4 a
LY152 5.9 b 24.2 a 13.2 ab 13.6 bc
平均Mean 7.5 A 25.0 B 13.2 B 14.0 A

图4

早、晚季供试品种不同生育阶段的平均光照拦截率(a, c)和光能利用效率(b, d) (小区试验) 数据是4个重复的平均值, 误差线表示标准误。XZX6: 湘早籼6号; ZX615: 早籼615; ZZ39/LY152: 中早39与两优152早晚搭配。"

表6

供试品种在分蘖中期和幼穗分化期的茎蘖数和叶面积指数(小区试验)"

季节
Season
品种/品系
Genotype
茎蘖数Stem number 叶面积指数Leaf area index
MT PI HD MT PI HD
早季 CPPC18 528 a 706 a 717 a 1.17 a 3.34 a 6.97 a
Early season XZX6 583 a 747 a 786 a 1.03 a 3.17 a 6.87 ab
ZX615 328 b 497 b 553 b 0.68 b 2.06 b 5.71 b
ZZ39 347 b 534 b 556 b 0.70 b 2.28 b 6.75 ab
平均Mean 403 B 583 A 653 A 0.81 B 2.53 B 6.58 A
晚季 CPPC18 647 ab 626 ab 477 b 1.13 ab 3.12 b 5.65 bc
Late season XZX6 769 a 712 a 535 a 1.06 ab 4.50 a 6.62 ab
ZX615 562 b 543 b 390 c 0.97 b 2.57 b 5.04 c
LY152 723 a 604 b 452 b 1.24 a 4.57 a 6.93 a
平均Mean 695 A 614 A 464 A 1.16 A 4.07 A 6.06 B

图5

供试品种在早、晚季的倒伏指数(小区试验) 数据是4个重复的平均值, 误差线表示标准误。XZX6: 湘早籼6号; ZX615: 早籼615; ZZ39/LY152: 中早39与两优152早晚搭配。"

表7

供试品种在早、晚季的倒伏相关性状(小区试验)"

季节
Season
品种/品系
Genotype
PH
(cm)
GH
(cm)
ID
(mm)
CWT
(mm)
DLI
(mg cm-1)
DVI
(mg cm-3)
BR
(g)
WP
(g cm)
M
(g cm)
早季 CPPC18 95.2 c 37.0 b 4.84 b 0.61 a 24.1 b 298.8 b 1196.5 b 960.7 c 1495.7 b
Early season XZX6 92.2 d 38.7 b 4.78 b 0.64 a 24.2 b 290.9 b 1045.8 c 1109.9 b 1307.2 c
ZX615 112.3 a 46.8 a 5.42 a 0.62 a 26.8 b 288.5 b 1319.3 b 1362.2 a 1649.2 b
ZZ39 105.6 b 44.9 a 5.61 a 0.65 a 35.1 a 345.6 a 1698.7 a 1433.5 a 2123.4 a
平均Mean 101.3 B 42.1 B 5.16 A 0.63 A 27.5 A 306.0 B 1315.1 A 1216.6 A 1643.8 A
晚季 CPPC18 98.7 c 41.3 c 4.66 b 0.56 bc 26.5 a 367.2 a 962.7 b 812.3 b 1203.4 b
Late season XZX6 94.5 d 42.3 c 4.45 b 0.54 c 24.9 a 372.2 a 894.6 b 797.5 b 1118.2 b
ZX615 113.8 a 48.8 a 5.14 a 0.60 ab 26.6 a 309.9 b 993.6 b 1183.5 b 1242.1 b
LY152 108.8 b 47.1 b 5.18 a 0.63 a 29.0 a 320.3 b 1391.8 a 1345.2 a 1739.8 a
平均Mean 104.0 A 44.9 A 4.86 B 0.58 B 26.7 A 342.4 A 1060.7 B 1034.6 B 1325.9 B

图6

水稻生长季(早、晚两季)的日平均温度和日照辐射(生产示范) 日均温和日照辐射数据来源于中国气象局国家气象信息中心。"

表8

供试品种生育期表现(生产示范)"

季节
Season
品种/品系
Genotype
营养生长期
Vegetative stage
生殖生长期
Reproductive stage
籽粒灌浆期
Ripening stage
全生育期
Total growth duration
早季 CPPC18 43 25 26 94
Early season XZX6 46 20 23 89
ZX615 45 24 29 98
ZZ39 47 26 28 101
晚季 CPPC18 30 18 41 89
Late season XZX6 29 19 37 85
ZX615 32 19 38 89
LY152 36 20 42 98

表9

供试品种的产量、日产量、产量构成因子、生物量和收获指数(生产示范)"

季节
Season
品种/
品系
Genotype
产量
Yield
(t hm-2)
日产量
Daily yield
(kg hm-2 d-1)
单位面积
穗数
Panicles
(m-2)
每穗
颖花数
Spikelets
panicle-1
单位面积
颖花数
Spikelets
(×103 m-2)
结实率
Grain
filling
(%)
千粒重
1000-grain weight (g)
生物量
Biomass
(t hm-2)
收获指数
Harvest index
(%)
早季 CPPC18 5.54 ab 58.9 a 475 a 74.2 c 34.7 b 74.7 ab 20.7 c 11.8 ab 45.5 a
Early season XZX6 5.18 b 58.2 a 413 ab 76.0 c 31.4 b 78.6 a 19.0 d 9.9 b 47.3 a
ZX615 6.49 a 66.2 a 386 ab 92.5 b 35.3 b 70.3 bc 22.6 b 12.5 a 44.9 a
ZZ39 5.74 ab 56.9 a 305 b 132.9 a 40.3 a 62.7 c 24.4 a 13.3 a 46.3 a
平均Mean 5.74 A 60.0 B 395 A 93.9 A 35.4 A 71.6 A 21.7 B 11.9 A 46.0 B
晚季 CPPC18 7.36 a 82.7 a 339 ab 120.3 a 40.4 a 75.7 a 20.8 b 12.1 a 52.2 a
Late season XZX6 5.43 b 63.8 b 386 a 80.6 b 31.0 b 81.9 a 21.2 b 10.5 ab 51.2 a
ZX615 4.96 b 55.7 b 272 b 90.8 b 24.3 b 74.1 a 23.5 a 8.8 b 47.9 a
LY152 5.71 b 58.3 b 299 b 96.7 b 28.2 b 71.2 a 23.9 a 9.8 b 48.6 a
平均Mean 5.87 A 65.1 A 324 B 97.1 A 31.0 B 75.7 A 22.3 A 10.3 B 50.0 A

表10

供试品种的齐穗期茎蘖数、叶面积指数和成熟期株高"

季节
Season
品种/品系
Genotype
茎蘖数
Stem number (m-2)
叶面积指数
LAI
株高
Plant height (cm)
早季 CPPC18 1003 a 8.82 a 90.3 b
Early season XZX6 793 b 6.09 b 84.9 b
ZX615 781 b 6.04 b 103.2 a
ZZ39 791 b 5.66 b 100.6 a
平均Mean 842 A 6.65 A 94.7 A
晚季 CPPC18 523 a 5.96 a 95.3 b
Late season XZX6 579 a 5.77 a 90.4 b
ZX615 488 a 4.94 a 102.5 a
LY152 493 a 5.05 a 102.9 a
平均Mean 521 B 5.43 B 97.8 A
[1] Huang M, Zou Y. Integrating mechanization with agronomy and breeding to ensure food security in China. Field Crops Res, 2018, 224: 22-27.
doi: 10.1016/j.fcr.2018.05.001
[2] 彭少兵. 对转型时期水稻生产的战略思考. 中国科学: 生命科学, 2014, 44: 845-850.
Peng S B. Reflection on China's rice production strategies during the transition period. Sci Sin, 2014, 44: 845-850. (in Chinese with English abstract)
[3] Ray D K, Foley J A. Increasing global crop harvest frequency: recent trends and future directions. Environ Res Lett, 2013, 8, 044041.
[4] 艾治勇, 郭夏宇, 刘文祥, 马国辉, 青先国. 长江中游地区双季稻安全生产日期的变化. 作物学报, 2014, 40: 1320-1329.
doi: 10.3724/SP.J.1006.2014.01320
Ai Z Y, Guo X Y, Liu W X, Ma G H, Qing X G. Changes of safe production dates of double-season rice in the middle reaches of the Yangtze River. Acta Agron Sin, 2014, 40: 1320-1329. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.01320
[5] Peng S B, Tang Q Y, Zou Y B. Current status and challenges of rice production in China. Plant Prod Sci, 2009, 12: 3-8.
doi: 10.1626/pps.12.3
[6] Yu X, Wang F, Xu L, Chen Z F, Yuan S, Wang X Y, Huang J L, Peng S B. Optimization of nitrogen management in both early and late seasons of direct-seeded double-season rice with an ultrashort-duration variety in central China. J Plant Growth Regul, 2023, 42: 3173-3183.
doi: 10.1007/s00344-022-10783-2
[7] Xu L, Zhan X W, Yu T T, Nie L X, Huang J L, Cui K H, Wang F, Li Y, Peng S B. Yield performance of direct-seeded, double-season rice using varieties with short growth durations in central China. Field Crops Res, 2018, 227: 49-55.
doi: 10.1016/j.fcr.2018.08.002
[8] Wang X Y, Yang G D, Xu L, Xiang H S, Yang C, Wang F, Peng S B. Grain yield and nitrogen use efficiency of an ultrashort-duration variety grown under different nitrogen and seeding rates in direct-seeded and double-season rice in central China. J Integr Agric, 2023, 22: 1009-1020.
doi: 10.1016/j.jia.2022.08.019
[9] Chen J N, Huang M, Cao F B, Yin X H, Zou Y B. Availability of existing early-season rice cultivars as resources for selecting high-yielding short-duration cultivars of machine-transplanted late-season rice. Exp Agric, 2019, 56: 218-226.
doi: 10.1017/S0014479719000310
[10] Ying J F, Peng S B, He Q R, Yang H, Yang C D, Visperas R M, Cassman K G. Comparison of high-yield rice in tropical and subtropical environments I. Determinants of grain and dry matter yields. Field Crops Res, 1998, 57: 71-84.
doi: 10.1016/S0378-4290(98)00077-X
[11] Farooq M, Siddique K H M, Rehman H, Aziz T, Lee D J, Wahid A. Rice direct seeding: Experiences, challenges and opportunities. Soil Tillage Res, 2011, 111: 87-98.
doi: 10.1016/j.still.2010.10.008
[12] Peng S B, Khush G S, Virk P, Tang Q Y, Zou Y B. Progress in ideotype breeding to increase rice yield potential. Field Crops Res, 2008, 108: 32-38.
doi: 10.1016/j.fcr.2008.04.001
[13] Zhang J, Li G H, Song Y P, Liu Z H, Yang C D, Tang S, Zheng C Y, Wang S H, Ding Y F. Lodging resistance characteristics of high-yielding rice populations. Field Crops Res, 2014, 161: 64-74.
doi: 10.1016/j.fcr.2014.01.012
[14] 周国峰. 超级稻新组合在洞庭湖区的生产适应性比较研究. 湖南农业大学硕士学位论文, 湖南长沙, 2007.
Zhou G F. Comparative Study on the Adaptability of New Combinations of Super Hybrid Rice. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2007. (in Chinese with English abstract)
[15] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. pp 1-638.
Lu R K. Soil Agro-Chemistrical Analysis. Beijing: China Science and Technology Press, 2000. pp 1-638. (in Chinese)
[16] 李国辉, 钟旭华, 田卡, 黄农荣, 潘俊峰, 何庭蕙. 施氮对水稻茎秆抗倒伏能力的影响及其形态和力学机理. 中国农业科学, 2013, 46: 1323-1334.
doi: 10.3864/j.issn.0578-1752.2013.07.003
Li G H, Zhong X H, Tian K, Huang N R, Pan J F, He T H. Effect of nitrogen application on stem lodging resistance of rice and its morphological and mechanical mechanisms. Sci Agric Sin, 2013, 46: 1323-1334. (in Chinese with English abstract)
[17] Zhang W J, Wu L M, Ding Y F, Weng F, Wu X R, Li G H, Liu Z H, Tang S, Ding C Q, Wang S H. Top-dressing nitrogen fertilizer rate contributes to decrease culm physical strength by reducing structural carbohydrate content in japonica rice. J Integr Agric, 2016, 15: 992-1004.
doi: 10.1016/S2095-3119(15)61166-2
[18] Xu L, Yuan S, Wang X Y, Chen Z F, Li X X, Cao J, Wang F, Huang J L, Peng S B. Comparison of yield performance between direct-seeded and transplanted double-season rice using ultrashort-duration varieties in central China. Crop J, 2022, 10: 515-523.
doi: 10.1016/j.cj.2021.07.003
[19] Wonprasaid S, Khunthasuvon S, Sittisuang P, Fukai S. Performance of contrasting rice cultivars selected for rainfed lowland conditions in relation to soil fertility and water availability. Field Crops Res, 1996, 47: 267-275.
doi: 10.1016/0378-4290(96)00013-5
[20] Tuong T P, Bhuiyan SI. Increasing water-use efficiency in rice production: farm level perspectives. Agric Water Manag, 1999, 40: 117-122.
doi: 10.1016/S0378-3774(98)00091-2
[21] Yuan S, Cassman K G, Huang J L, Peng S B, Grassini P. Can ratoon cropping improve resource use efficiencies and profitability of rice in central China? Field Crops Res, 2019, 234: 66-72.
doi: 10.1016/j.fcr.2019.02.004
[22] Xu L, Yuan S, Wang X Y, Yang G D, Pan X C, Yu X, Wang F, Huang J L, Peng S B. Productivity and global warming potential of direct seeding and transplanting in double-season rice of central China. Food Energy Secur, 2022, 12, e419.
[23] Peng S, Cassman K G, Virmani S S, Sheehy J, Khush G S. Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential. Crop Sci, 1999, 39: 1552-1559.
doi: 10.2135/cropsci1999.3961552x
[24] 彭碧琳, 胡香玉, 钟旭华, 田卡, 黄农荣, 潘俊峰, 梁开明, 刘彦卓, 傅友强. 华南双季直播稻品种筛选及其产量形成特征研究. 中国稻米, 2019, 25(5): 47-52.
doi: 10.3969/j.issn.1006-8082.2019.05.010
Peng B L, Hu X Y, Zhong X H, Tian K, Huang N R, Pan J F, Liang K L, Liu Y Z, Fu Y Q. Selection and yield formation characteristics of double-cropping and direct seeding rice in south China. China Rice, 2019, 25(5): 47-52. (in Chinese with English abstract)
doi: 10.3969/j.issn.1006-8082.2019.05.010
[25] 詹学武. 湖北地区双季稻直播种植模式研究. 华中农业大学硕士学位论文, 湖北武汉, 2016.
Zhan X W. Study on Agronomic Performance of Direct Seeding in Double-season Rice in Hubei Province. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2016. (in Chinese with English abstract)
[26] Wang W X, Du J, Zhou Y Z, Zeng Y J, Tan X M, Pan X H, Shi Q H, Wu Z M, Zeng Y H. Effects of different mechanical direct seeding methods on grain yield and lodging resistance of early indica rice in South China. J Integr Agric, 2021, 20: 1204-1215.
doi: 10.1016/S2095-3119(20)63191-4
[27] 杨若珺. 湖南省水稻熟制变化与农民选择行为分析. 中国农业科学院硕士学位论文, 北京, 2013.
Yang R J. Analysis of farmer selection behaviors of rice cropping system in Hunan Province. MS Thesis of Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China, 2013. (in Chinese with English abstract)
[28] 李勇, 杨林章, 殷广德. 太湖地区直播稻田氮素渗漏损失试验研究. 植物营养与肥料学报, 2010, 16: 99-104.
Li Y, Yang L Z, Yin G D. Experimental study on nitrogen leaching in a direct-seeding rice paddy of Taihu Lake Basin. Plant Nutr Fert Sci, 2010, 16: 99-104 (in Chinese with English abstract).
[29] 武红亮, 王士超, 闫志浩, 槐圣昌, 马常宝, 薛彦东, 徐明岗, 卢昌艾. 近30年我国典型水稻土肥力演变特征. 植物营养与肥料学报, 2018, 24: 1416-1424.
Wu H L, Wang S C, Yan Z H, Huai S C, Ma C B, Xue Y D, Xu M G, Lu C A. Evolution characteristics of fertility paddy soil in China in recent 30 years. Plant Nutr Fert Sci, 2018, 24: 1416-1424. (in Chinese with English abstract)
[30] 滕祥勇, 王金明, 李鹏志, 林秀云, 孙强. 水稻抗倒伏性的影响因素及评价方法研究进展. 福建农业学报, 2021, 36: 1245-1254.
Teng X Y, Wang J M, Li P Z, Lin X Y, Sun Q. Advances on studies relating to lodging resistance of rice plant. Fujian J Agric Sci, 2021, 36: 1245-1254. (in Chinese with English abstract)
[31] 陆展华, 王晓飞, 刘维, 卢东柏, 王石光, 薛皦, 何秀英. 优质稻粤农丝苗抗倒伏影响因素和遗传分析. 植物遗传资源学报, 2021, 22: 638-645.
doi: 10.13430/j.cnki.jpgr.20200918003
Lu Z H, Wang X F, Liu W, Lu D B, Wang S G, Xue J, He X Y. Influencing factors and genetic analysis of lodging resistance of high-quality rice Yuenonog Simiao. J Plant Genet Resour, 2021, 22: 638-645. (in Chinese with English abstract)
[32] Zhang W J, Wu L M, Wu X R, Ding Y F, Li G H, Li J Y, Weng F, Liu Z H, Tang S, Ding C Q, Wang S H. Lodging resistance of japonica rice (Oryza sativa L.): morphological and anatomical traits due to top-dressing nitrogen application rates. Rice, 2016, 9: 31-41.
doi: 10.1186/s12284-016-0103-8
[33] 雷小龙, 刘利, 苟文, 马荣朝, 任万军. 种植方式对杂交籼稻植株抗倒伏特性的影响. 作物学报, 2013, 39: 1814-1825.
doi: 10.3724/SP.J.1006.2013.01814
Lei X L, Liu L, Gou W, Ma R C, Ren W J. Effect of planting methods on culm lodging resistance of indica hybrid rice (Oryza sativa L.). Acta Agron Sin, 2013, 39: 1814-1825. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.01814
[34] Wang X Y, Xu L, Li X X, Yang G D, Wang F, Peng S B. Grain yield and lodging-related traits of ultrashort-duration varieties for direct-seeded, double-season rice in central China. J Integr Agric, 2021, 21: 2888-2899.
doi: 10.1016/j.jia.2022.07.035
[35] 章清杞, 蔡来龙, 黄荣华, 程祖锌. 直播稻栽培技术研究进展. 亚热带农业研究, 2020, 16: 1-7.
Zhang Q Q, Cai L L, Huang R H, Cheng Z X. Research progress of direct seeding rice cultivation techniques. Subtrop Agric Res, 2020, 16: 1-7. (in Chinese with English abstract)
[1] 李亦扬, 李远, 赵子胥, 张鼎顺, 杜嘉宁, 吴淑娟, 孙思琦, 陈媛, 张祥, 陈德华, 刘震宇. 土壤增氮对棉铃对位叶Bt杀虫蛋白含量影响及氮代谢机制[J]. 作物学报, 2023, 49(9): 2505-2516.
[2] 张丽华, 张经廷, 董志强, 侯万彬, 翟立超, 姚艳荣, 吕丽华, 赵一安, 贾秀领. 不同降水年型水分运筹对冬小麦产量及其构成的影响[J]. 作物学报, 2023, 49(9): 2539-2551.
[3] 张刁亮, 杨昭, 胡发龙, 殷文, 柴强, 樊志龙. 复种绿肥在不同灌水水平下对小麦籽粒品质和产量的影响[J]. 作物学报, 2023, 49(9): 2572-2581.
[4] 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372.
[5] 房孟颖, 任粱, 卢霖, 董学瑞, 武志海, 闫鹏, 董志强. 乙矮合剂对粒用高粱根系建构和产量的影响[J]. 作物学报, 2023, 49(9): 2528-2538.
[6] 杨毅, 何志强, 林佳慧, 李洋, 陈飞, 吕长文, 唐道彬, 周全卢, 王季春. 椰糠施用量对土壤理化性状和甘薯产量的影响[J]. 作物学报, 2023, 49(9): 2517-2527.
[7] 曹玉军, 刘志铭, 兰天娇, 刘小丹, 魏雯雯, 姚凡云, 吕艳杰, 王立春, 王永军. 吉林省不同年代玉米品种光合生理特性对施氮量的响应[J]. 作物学报, 2023, 49(8): 2183-2195.
[8] 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209.
[9] 李宇星, 马亮亮, 张月, 秦博雅, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对灌浆期高温胁迫下小麦旗叶生理特性和产量的影响[J]. 作物学报, 2023, 49(8): 2210-2224.
[10] 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王丽芳, 王晨阳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307.
[11] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成[J]. 作物学报, 2023, 49(7): 1919-1929.
[12] 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905.
[13] 张露露, 张学美, 牟文燕, 黄宁, 郭子糠, 罗一诺, 魏蕾, 孙利谦, 王星舒, 石美, 王朝辉. 我国主要麦区小麦籽粒锰含量: 品种与土壤因素的影响[J]. 作物学报, 2023, 49(7): 1906-1918.
[14] 董志强, 吕丽华, 姚艳荣, 张经廷, 张丽华, 姚海坡, 申海平, 贾秀领. 水氮互作下强筋小麦师栾02-1产量和品质[J]. 作物学报, 2023, 49(7): 1942-1953.
[15] 邓艾兴, 李歌星, 吕玉平, 刘猷红, 孟英, 张俊, 张卫建. 齐穗后遮阴时长对西北稻区粳稻产量和品质的影响[J]. 作物学报, 2023, 49(7): 1930-1941.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .