• •
胡城祯1,2,高维东1,2,孔斌雪1,3,王建飞1,2,车卓1,杨德龙1,2,*,陈涛1,2,*
Hu Cheng-Zhen1,2,Gao Wei-Dong1,2,Kong Bing-Xue1,3,Wang Jian-Fei1,2,Che Zhuo1,Yang De-Long1,2,*,Chen Tao1,2,*
摘要:
后期促进复合物(The anaphase-promoting complex/cyclosome, APC/C)是一种由多亚基组成的cullin-RING型E3泛素连接酶,其中复合物亚基APC11含有RING结构域,可能通过泛素化特定的靶蛋白调控细胞周期,进而参与植物的非生物胁迫。本研究采用生物信息学方法对小麦TaAPC11家族成员进行全基因组鉴定,并重点研究了TaAPC11-5B基因参与干旱胁迫调控的生物学功能。结果表明,小麦基因组中共鉴定到23个TaAPC11家族成员,可分为3个亚族,同一亚族成员具有相似的基因结构和Motif。共线性分析表明,片段复制促进TaAPC11基因家族的扩张,且在进化过程中受到纯化选择。顺式作用元件分析表明,TaAPC11基因家族成员的启动子区存在大量非生物胁迫响应元件。实时荧光定量(qRT-PCR)分析表明,TaAPC11-5B/6A2/4D1/3B2基因的转录表达均受到PEG-6000和ABA的显著诱导,其中TaAPC11-5B在PEG-6000处理后上调倍数最高。亚细胞定位表明,TaAPC11-5B定位于细胞核与细胞质中。对野生型(WT)和TaAPC11转基因水稻株系(TaAPC11-5B-OE)进行干旱胁迫处理,分析其抗旱表型发现,TaAPC11-5B-OE的存活率显著高于WT,株高显著增加,叶片卷曲程度减轻;生理指标测定发现,TaAPC11-5B-OE的相对电导率和丙二醛含量显著低于WT,脯氨酸含量显著高于WT。进一步通过DAB (3,3'-二氨基联苯胺)、NBT (氮蓝四唑)染色及抗氧化酶活性分析发现,PEG-6000处理后TaAPC11-5B-OE叶片的过氧化氢(H2O2)和超氧阴离子(O2?)含量低于WT,过氧化氢酶(CAT)、过氧化物酶(POD)和超氧化物歧化酶(SOD)的活性均显著高于WT。本研究为深入解析小麦TaAPC11-5B基因响应干旱胁迫的生物学功能提供了理论依据和材料基础。
[1] Levy A A, Feldman M. Evolution and origin of bread wheat. Plant Cell, 2022, 34: 2549–2567. [2] Yao Y, Guo W, Gou J, Hu Z, Liu J, Ma J, Zong Y, Xin M, Chen W, Li Q, et al. Wheat2035: integrating pan-omics and advanced biotechnology for future wheat design. Mol Plant, 2025: 272–297. [3] Curtis T, Halford N G. Food security: the challenge of increasing wheat yield and the importance of not compromising food safety. Ann Appl Biol, 2014, 164: 354–372. [4] Martínez-Férriz A, Ferrando A, Fathinajafabadi A, Farràs R. Ubiquitin-mediated mechanisms of translational control. Semin Cell Dev Biol, 2022, 132: 146–154. [5] Xiong E H, Qu X L, Li J F, Liu H L, Ma H, Zhang D, Chu S S, Jiao Y Q. The soybean ubiquitin-proteasome system: current knowledge and future perspective. Plant Genome, 2023, 16: e20281. [6] Zhang J L, Li C N, Li L, Xi Y J, Wang J Y, Mao X G, Jing R L. RING finger E3 ubiquitin ligase gene TaAIRP2-1B controls spike length in wheat. J Exp Bot, 2023, 74: 5014–5025. [7] Xu F Q, Xue H W. The ubiquitin-proteasome system in plant responses to environments. Plant Cell Environ, 2019, 42: 2931–2944. [8] Al-Saharin R, Hellmann H, Mooney S. Plant E3 ligases and their role in abiotic stress response. Cells, 2022, 11: 890. [9] Wang R Y, You X M, Zhang C Y, Fang H, Wang M, Zhang F, Kang H X, Xu X, Liu Z, Wang J Y, et al. An ORFeome of rice E3 ubiquitin ligases for global analysis of the ubiquitination interactome. Genome Biol, 2022, 23: 154. [10] Barroso-Gomila O, Merino-Cacho L, Muratore V, Perez C, Taibi V, Maspero E, Azkargorta M, Iloro I, Trulsson F, Vertegaal A C O, et al. BioE3 identifies specific substrates of ubiquitin E3 ligases. Nat Commun, 2023, 14: 7656. [11] de Oliveira P N, da Silva L F C, Eloy N B. The role of APC/C in cell cycle dynamics, growth and development in cereal crops. Front Plant Sci, 2022, 13: 987919. [12] Heyman J, De Veylder L. The anaphase-promoting complex/cyclosome in control of plant development. Mol Plant, 2012, 5: 1182–1194. [13] Guo L, Jiang L, Zhang Y, Lu X L, Xie Q, Weijers D, Liu C M. The anaphase-promoting complex initiates zygote division in Arabidopsis through degradation of cyclin B1. Plant J, 2016, 86: 161–174. [14] You J, Xiao W W, Zhou Y, Shen W Q, Ye L, Yu P, Yu G L, Duan Q N, Zhang X F, He Z F, et al. The apc/ctad1-wide leaf 1-narrow leaf 1 pathway controls leaf width in rice. Plant Cell, 2022, 34: 4313–4328. [15] Lin Q B, Zhang Z, Wu F Q, Feng M, Sun Y, Chen W W, Cheng Z J, Zhang X, Ren Y L, Lei C L, et al. The APC/CTE E3 ubiquitin ligase complex mediates the antagonistic regulation of root growth and tillering by ABA and GA. Plant Cell, 2020, 32: 1973–1987. [16] Schwedersky R P, Saleme M L S, Rocha I A, Montessoro P D F, Hemerly A S, Eloy N B, Ferreira P C G. The anaphase promoting complex/cyclosome subunit 11 and its role in organ size and plant development. Front Plant Sci, 2021, 12: 563760. [17] Xu J, Liu H J, Zhou C, Wang J X, Wang J Q, Han Y H, Zheng N, Zhang M, Li X M. The ubiquitin-proteasome system in the plant response to abiotic stress: Potential role in crop resilience improvement. Plant Sci, 2024, 342: 112035. [18] Wang J N, Zhang T Y, Tu A Z, Xie H X, Hu H C, Chen J P, Yang J. Genome-wide identification and analysis of APC E3 ubiquitin ligase genes family in Triticum aestivum. Genes (Basel), 2024, 15: 271. [19] Bao Z L, Yang H J, Hua J. Perturbation of cell cycle regulation triggers plant immune response via activation of disease resistance genes. Proc Natl Acad Sci USA, 2013, 110: 2407–2412. [20] 覃碧, 王肖肖, 杨玉双, 聂秋海, 陈秋惠, 刘实忠. 橡胶草TkAPC10基因的鉴定及其表达模式分析. 植物研究. 2022, 42: 830–839. Qin B, Wang X X, Yang Y S, Nie Q H, Huichen Q, Liu S Z. Identification and expression pattern analysis of TkAPC10 in Taraxacum kok-saghyz Rodin. Bull Bot Res, 2022, 42: 830–839 (in Chinese with English abstract). [21] Zhang P P, Zhang L H, Chen T, Jing F L, Liu Y, Ma J F, Tian T, Yang D L. Genome-wide identification and expression analysis of the GSK gene family in wheat (Triticum aestivum L.). Mol Biol Rep, 2022, 49: 2899–2913. [22] Finn R D, Mistry J, Schuster-Böckler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R. Pfam: clans, web tools and services. Nucleic Acids Res, 2006, 34: D247–D251. [23] Eddy S R. Accelerated profile HMM searches. PLoS Comput Biol, 2011, 7: e1002195. [24] Marchler-Bauer A, Derbyshire M K, Gonzales N R, Lu S N, Chitsaz F, Geer L Y, Geer R C, He J, Gwadz M, Hurwitz D I, et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res, 2015, 43: D222–D226. [25] Letunic I, Khedkar S, Bork P. SMART: recent updates, new developments and status in 2020. Nucleic Acids Res, 2021, 49: D458–D460. [26] Youn J H, Kim T W. Functional insights of plant GSK3-like kinases: multi-taskers in diverse cellular signal transduction pathways. Mol Plant, 2015, 8: 552–565. [27] Chou K C, Shen H B. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One, 2010, 5: e11335. [28] Xie J M, Chen Y R, Cai G J, Cai R L, Hu Z, Wang H. Tree visualization by one table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Res, 2023, 51: W587–W592. [29] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194–1202. [30] Pan X P, Zhang B H. Identification of stable reference genes for toxicogenomic and gene expression analysis. Methods Mol Biol, 2021, 2326: 67–94. [31] Wang Y P, Li J P, Paterson A H. MCScanX-transposed: detecting transposed gene duplications based on multiple colinearity scans. Bioinformatics, 2013, 29: 1458–1460. [32] Zhang Z, Li J, Zhao X Q, Wang J, Wong G K, Yu J. KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genomics Proteomics Bioinformatics, 2006, 4: 259–263. [33] Borrill P, Ramirez-Gonzalez R, Uauy C. ExpVIP: a customizable RNA-seq data analysis and visualization platform. Plant Physiol, 2016, 170: 2172–2186. [34] Oleson A E, Sasakuma M. S1 nuclease of Aspergillus oryzae: a glycoprotein with an associated nucleotidase activity. Arch Biochem Biophys, 1980, 204: 361–370. [35] Chen T, Miao Y P, Jing F L, Gao W D, Zhang Y Y, Zhang L, Zhang P P, Guo L J, Yang D L. Genomic-wide analysis reveals seven in absentia genes regulating grain development in wheat (Triticum aestivum L.). Plant Genome, 2024, 17: e20480. [36] Dong F Y, Liu Y D, Zhang H D, Li Y Q, Song J H, Chen S, Wang S L, Zhu Z W, Li Y, Liu Y K. TaSnRK3.23B, a CBL-interacting protein kinase of wheat, confers drought stress tolerance by promoting ROS scavenging in Arabidopsis. BMC Plant Biol, 2025, 25: 59. [37] 杨利, 王波, 李文姣, 王兴军, 赵术珍. 干旱胁迫下ROS的产生、清除及信号转导研究进展. 生物技术通报. 2021, 37(4): 194–203. Yang L, Wang B, Li W J, Wang X J, Zhao S Z. Research progress on production,scavenging and signal transduction of ROS under drought stress. Biotechnol Bull 2021, 37(4): 194–203 (in Chinese with English abstract). [38] de Freitas Lima M, Eloy N B, Bottino M C, Hemerly A S, Ferreira P C G. Overexpression of the anaphase-promoting complex (APC) genes in Nicotiana tabacum promotes increasing biomass accumulation. Mol Biol Rep, 2013, 40: 7093–7102. [39] Xu C, Wang Y H, Yu Y C, Duan J B, Liao Z G, Xiong G S, Meng X B, Liu G F, Qian Q, Li J Y. Degradation of MONOCULM 1 by APC/C(TAD1) regulates rice tillering. Nat Commun, 2012, 3: 750. [40] Sun J Q, Huang S Y, Lu Q, Li S, Zhao S Z, Zheng X J, Zhou Q, Zhang W X, Li J, Wang L L, et al. UV-B irradiation-activated E3 ligase GmILPA1 modulates gibberellin catabolism to increase plant height in soybean. Nat Commun, 2023, 14: 6262. [41] Zheng N, Shabek N. Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem, 2017, 86: 129–157. [42] Ma J H, Wang Y D, Tang X X, Zhao D Y, Zhang D J, Li C X, Li W, Li T, Jiang L N. TaSINA2B, interacting with TaSINA1D, positively regulates drought tolerance and root growth in wheat (Triticum aestivum L.). Plant Cell Environ, 2023, 46: 3760–3774. [43] Li S M, Zhang Y F, Liu Y L, Zhang P Y, Wang X M, Chen B, Ding L, Nie Y X, Li F F, Ma Z B, et al. The E3 ligase TaGW2 mediates transcription factor TaARR12 degradation to promote drought resistance in wheat. Plant Cell, 2024, 36: 605–625. [44] Gao W D, Zhang L, Zhang Y Y, Zhang P P, Shahinnia F, Chen T, Yang D L. Genome‑wide identification and expression analysis of the UBC gene family in wheat (Triticum aestivum L.). BMC Plant Biol, 2024, 24: 341. [45] He F, Wang H L, Li H G, Su Y Y, Li S, Yang Y L, Feng C H, Yin W L, Xia X L. PeCHYR1, a ubiquitin E3 ligase from Populus euphratica, enhances drought tolerance via ABA-induced stomatal closure by ROS production in Populus. Plant Biotechnol J, 2018, 16: 1514–1528. [46] Wang N, Liu Y P, Cong Y H, Wang T T, Zhong X J, Yang S P, Li Y, Gai J Y. Genome-wide identification of soybean U-box E3 ubiquitin ligases and roles of GmPUB8 in negative regulation of drought stress response in Arabidopsis. Plant Cell Physiol, 2016, 57: 1189–1209. [47] Zhang H M, Zhu J H, Gong Z Z, Zhu J K. Abiotic stress responses in plants. Nat Rev Genet, 2022, 23: 104–119. [48] Sun C X, Palmqvist S, Olsson H, Borén M, Ahlandsberg S, Jansson C. A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell, 2003, 15: 2076–2092. [49] 李淑敏. 泛素E3连接酶TaGW2调控小麦抗逆性的分子机制研究. 西北农林科技大学博士学位论文, 陕西杨凌, 2023. Li S M. The Molecular Mechanism of E3 Ubiqutin Ligase TaGW2 in Regulating Wheat Stress Resistance. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, Chian, 2023 (in Chinese with English abstract). [50] Qi X H, Tang X, Liu W G, Fu X, Luo H Y, Ghimire S, Zhang N, Si H J. A potato RING-finger protein gene StRFP2 is involved in drought tolerance. Plant Physiol Biochem, 2020, 146: 438–446. [51] Poggi G M, Corneti S, Aloisi I. The quest for reliable drought stress screening in tetraploid wheat (Triticum turgidum spp.) seedlings: why MDA quantification after treatment with 10% PEG-6000 falls short. Life (Basel), 2024, 14: 517. [52] Kim J H, Cho A Y, Lim S D, Jang C S. Mutation of a RING E3 ligase, OsDIRH2, enhances drought tolerance in rice with low stomata density. Physiol Plant, 2024, 176: e14565. [53] Li J J, Li Y, Yin Z G, Jiang J H, Zhang M H, Guo X, Ye Z J, Zhao Y, Xiong H Y, Zhang Z Y, et al. OsASR5 enhances drought tolerance through a stomatal closure pathway associated with ABA and H2O2 signalling in rice. Plant Biotechnol J, 2017, 15: 183–196. [54] Wang B X, Li L Q, Liu M L, Peng D, Wei A S, Hou B Y, Lei Y H, Li X J. TaFDL2-1A confers drought stress tolerance by promoting ABA biosynthesis, ABA responses, and ROS scavenging in transgenic wheat. Plant J, 2022, 112: 722–737. [55] Du B, Nie N, Sun S F, Hu Y F, Bai Y D, He S Z, Zhao N, Liu Q C. A novel sweetpotato RING-H2 type E3 ubiquitin ligase gene IbATL38 enhances salt tolerance in transgenic Arabidopsis. Plant Sci, 2021, 304: 110802. [56] Yang H, Zhang Y, Lyu S W, Mao Y P, Yu F Q, Liu S, Fang Y J, Deng S L. Arabidopsis CIRP1 E3 ligase modulates drought and oxidative stress tolerance and reactive oxygen species homeostasis by directly degrading catalases. J Integr Plant Biol, 2025, 67: 1274–1289. |
[1] | 杨婷婷, 陈娟, ABDUL Rehman, 李婧, 闫素辉, 汪建来, 李文阳. 花后弱光对软质小麦干物质积累转运、籽粒产量和淀粉品质的影响[J]. 作物学报, 2025, 51(8): 2204-2219. |
[2] | 张飞飞, 何万龙, 焦文娟, 白斌, 耿洪伟, 程宇坤. 小麦抗条锈病相关性状元分析及候选基因分析[J]. 作物学报, 2025, 51(8): 2111-2127. |
[3] | 闫喆林, 任强, 樊志龙, 殷文, 孙亚丽, 范虹, 何蔚, 胡发龙, 闫丽娟, 柴强. 氮肥后移优化绿洲灌区小麦间作玉米种间关系提高氮素利用效率[J]. 作物学报, 2025, 51(8): 2190-2203. |
[4] | 宋改利, 王璐倩, 屈柯飞, 唐建卫, 董纯豪, 黄振朴, 高艳, 牛吉山, 殷贵鸿, 李巧云. Bipolaris sorokiniana黑胚病对中筋小麦淀粉含量、粒度分布与糊化特性的影响[J]. 作物学报, 2025, 51(8): 2164-2175. |
[5] | 王曜阔, 王文政, 张敏, 刘希伟, 杨敏, 李昊昱, 张灵鑫, 闫彦菲, 蔡瑞国. 水氮运筹对冬小麦籽粒GMP合成和面粉加工品质的影响[J]. 作物学报, 2025, 51(8): 2176-2189. |
[6] | 高梦娟, 赵贺莹, 陈家辉, 陈晓倩, 牛萌康, 钱琪润, 崔陆飞, 邢江敏, 银庆淼, 郭雯, 张宁, 孙丛苇, 阳霞, 裴丹, 贾奥琳, 陈锋, 余晓东, 任妍. 小麦抗纹枯病新位点Qse.hnau-5AS的定位及其候选基因鉴定[J]. 作物学报, 2025, 51(8): 2240-2250. |
[7] | 王彬, 蒙姜宇, 邱浩良, 贺亚军, 钱伟. 甘蓝型油菜BnaDUF579基因家族的鉴定与表达模式分析[J]. 作物学报, 2025, 51(8): 2100-2110. |
[8] | 姜朋, 吴磊, 黄倩楠, 李畅, 王化敦, 何漪, 张鹏, 张旭. 矮秆基因Rht-D1在长江中下游麦区的育种利用探索[J]. 作物学报, 2025, 51(8): 2077-2086. |
[9] | 鲁向前, 付玉洁, 赵俊恒, 郑楠楠, 孙楠楠, 张国平, 叶玲珍. 小麦花药培养最佳取样时期穗部形态特征鉴定与高培养力基因型筛选[J]. 作物学报, 2025, 51(8): 2033-2047. |
[10] | 蔡金珊, 李超男, 王景一, 李宁, 柳玉平, 景蕊莲, 李龙, 孙黛珍. 小麦幼苗根系性状全基因组关联分析及TaSRL-3B优异等位基因发掘[J]. 作物学报, 2025, 51(8): 2020-2032. |
[11] | 吴柳格, 陈坚, 张鑫, 邓艾兴, 宋振伟, 郑成岩, 张卫建. 近二十年国审冬小麦品种的产量与品质性状变化趋势研究[J]. 作物学报, 2025, 51(7): 1814-1826. |
[12] | 赵佳雯, 李子洪, 欧星雨, 王伊朗, 丁小飞, 梁乐瑶, 丁文金, 张海鹏, 马尚宇, 樊永惠, 黄正来, 张文静. 氮肥与钾肥运筹对弱筋小麦籽粒产量、品质的影响[J]. 作物学报, 2025, 51(7): 1914-1933. |
[13] | 闫知兰, 赵芹, 常甜达, 王一鸣, 王碧辉, 王鹏, 黄春国, 张会, 王利祥, 郝晓鹏, 赵波. 豆科作物AOX基因鉴定及其在普通菜豆响应非生物胁迫中的表达模式研究[J]. 作物学报, 2025, 51(7): 1769-1783. |
[14] | 赵超男, 王金凤, 张玉, 张丽, 李瑞琦, 王鹏飞, 李鸽子, 张宏军, 虞波, 康国章. 全基因组关联分析定位与挖掘小麦氮高效基因[J]. 作物学报, 2025, 51(7): 1801-1813. |
[15] | 王天译, 杨绣娟, 赵佳佳, 郝宇琼, 郑兴卫, 武棒棒, 李晓华, 郝水源, 郑军. 山西小麦醇溶蛋白多样性及其对面粉品质效应研究[J]. 作物学报, 2025, 51(7): 1784-1800. |
|