• •
陈昊翔,万鑫杰,陈青,王劲松,董二伟,王媛,黄晓磊,刘秋霞,焦晓燕*
CHEN Hao-Xiang,WAN Xin-Jie,CHEN Qing,WANG Jin-Song,DONG Er-Wei,WANG Yuan,HUANG Xiao-Lei,LIU Qiu-Xia,JIAO Xiao-Yan*
摘要:
基于长期定位试验,比较高粱和玉米2种作物耐瘠性和对不同土壤肥力的响应,为同一区域瘠薄土壤种植高粱替代玉米提供理论支撑。长期不同施肥定位试验始于2011年,共设CK (不施肥)、PK (缺氮)、NK (缺磷)、NP (缺钾)、NPK (氮磷钾肥)、MS (秸秆还田配施有机肥)和NPKMS (氮磷钾肥秸秆还田配施肥有机肥) 7个处理并形成了不同的土壤肥力,比较研究高粱和玉米产量及其构成、生长发育及养分吸收对土壤肥力响应的差异。结果表明,CK和PK处理的高粱产量高于玉米,其余处理的玉米产量高于高粱。与NPKMS处理相比,CK、PK、NK和NP处理的高粱产量分别降低52.4%~57.0%、49.6%~51.0%、18.4%~40.0%和4.1%~18.0%,玉米产量降低70.7%~73.2%、68.4%~73.1%、44.3%~21.0%和10.0%~22.4%;CK、PK和NK处理下2种作物单位面积穗数和穗粒数均显著降低,其中,CK和PK处理降低玉米单粒重,但增加高粱单粒重。与NPKMS处理相比,CK、PK和NK处理推迟2种作物的花期,但对玉米的影响更为明显;高粱四叶期前作物相对生长速率(CGR)低于玉米,苗期氮、磷及钾吸收量也小于玉米,但四叶期至花期高粱CGR大于玉米;高粱花期叶面积指数(LAI)及地上部生物量、氮磷钾吸收量均高于玉米,与玉米相比,养分亏缺对高粱生物量和CGR影响较小。整体来看,高粱氮、磷及钾收获指数和生理利用效率小于玉米,但CK和PK处理下高粱氮、磷收获指数和氮、磷及钾生理效率与玉米相当,甚至高于玉米。对土壤养分、籽粒产量及其构成和养分吸收利用的相关性分析表明,土壤养分含量与2种作物的产量、单位面积穗数和穗粒数,以及玉米的单粒重均呈正相关,与高粱单粒重呈负相关。综上,土壤养分亏缺时高粱产量、养分吸收利用能力高于玉米,养分胁迫降低了2种作物单位面积穗数和穗粒数,尽管也降低玉米单粒重但提高了高粱的单粒重;延长了2种作物营养生长阶段,但对高粱的影响小于玉米,本研究为2种作物合理施肥及同区域因地适种提供了理论依据。
[1] 中华人民共和国农业农村部. 2019年全国耕地质量等级情况公报. 中国农业综合开发, 2020, (6): 6–12.
[2] 曹晓风, 孙波, 陈化榜, 周俭民, 宋显伟, 刘小京, 邓向东, 李秀军, 赵玉国, 张家宝, 等. 我国边际土地产能扩增和生态效益提升的途径与研究进展. 中国科学院院刊, 2021, 36: 336–348. [3] Swigonová Z, Lai J S, Ma J X, Ramakrishna W, Llaca V, Bennetzen J L, Messing J. Close split of sorghum and maize genome progenitors. Genome Res, 2004, 14: 1916–1923. [4] Sarr P S, Ando Y, Nakamura S, Deshpande S, Subbarao G V. Sorgoleone release from sorghum roots shapes the composition of nitrifying populations, total bacteria, and Archaea and determines the level of nitrification. Biol Fert Soils, 2020, 56: 145–166. [5] Zakir H A K M, Subbarao G V, Pearse S J, Gopalakrishnan S, Ito O, Ishikawa T, Kawano N, Nakahara K, Yoshihashi T, Ono H, et al. Detection, isolation and characterization of a root-exuded compound, methyl 3-(4-hydroxyphenyl) propionate, responsible for biological nitrification inhibition by Sorghum (Sorghum bicolor). New Phytol, 2008, 180: 442–451. [6] Leon A, Nedumaran S. Estimating the effect of biological nitrification inhibition-enabled sorghum on nitrogen fertilizer consumption, life cycle GHG emissions, farmer’s benefit and fertilizer subsidy from Indian sorghum production. Sci Total Environ, 2024, 957: 177385.
[7] 陆玉芳, 施卫明. 生物硝化抑制剂的研究进展及其农业应用前景. 土壤学报, 2021, 58: 545–557. [8] Coskun D, Britto D T, Shi W M, Kronzucker H J. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nat Plants, 2017, 3: 17074. [9] Negri L, Bosi S, Fakaros A, Ventura F, Magagnoli S, Masetti A, Lami F, Oliveti G, Poggi G M, Bertinazzi L, et al. Millets and sorghum as promising alternatives to maize for enhancing climate change adaptation strategies in the Mediterranean Basin. Field Crops Res, 2024, 318: 109563. [10] Assefa Y, Roozeboom K L, Thompson C, Schlegel A, Stone L, Lingnfelser J E. Corn and Grain Sorghum Comparison: All Things Considered, New York: Academic Press, 2014. pp 72–84.
[11]付江鹏, 贺正, 贾彪, 刘慧芳, 李振洲, 刘志. 滴灌玉米临界氮稀释曲线与氮素营养诊断研究. 作物学报, 2020, 46: 290–299.
[12]张帅, 张硕, 王劲松, 董二伟, 刘秋霞, 白文斌, 王媛, 蔡霞, 黄晓磊, 焦晓燕. 基于叶面积指数的高粱、玉米临界氮浓度稀释曲线模型构建与比较研究. 中国农业大学学报, 2025, 30(6): 57–69. [13] Kunrath T R, Lemaire G, Teixeira E, Brown H E, Ciampitti I A, Sadras V O. Allometric relationships between nitrogen uptake and transpiration to untangle interactions between nitrogen supply and drought in maize and sorghum. Eur J Agron, 2020, 120: 126145. [14] Parra G, Borrás L, Gambin B L. Maize long-term genetic progress explains current dominance over sorghum in Argentina. Eur J Agron, 2020, 119: 126122. [15] Parra G, Borrás L, Gambin B L. Crop attributes explaining current grain yield dominance of maize over sorghum. Field Crops Res, 2022, 275: 108346. [16] Liben F M, Adisu T, Atnafu O, Bekele I, Berhe H, Wortmann C S. Maize and sorghum nutrient response functions for Ethiopia. Nutr Cycl Agroecosyst, 2020, 117: 401–410. [17] Baye W, Xie Q, Xie P. Genetic architecture of grain yield-related traits in Sorghum and maize. Int J Mol Sci, 2022, 23: 2405. [18] Ray D K, Mueller N D, West P C, Foley J A. Yield trends are insufficient to double global crop production by 2050. PLoS One, 2013, 8: e66428. [19] 全国土壤普查办公室. 中国土壤. 北京: 中国农业出版社, 1998. pp 1242–1243. National Soil Census Office. China Soil. Beijing: China Agriculture Press, 1998. pp 1242–1243 (in Chinese). [20] Singh D, Sharma J, Singh S P, Sadawarti M J, Kushwah N, Chouhan S, Parihar C, Chauhan A P. Physiological parameters and quality of potato under different planting dates. J Exp Agric Int, 2023, 45: 51–58. [21]王劲松, 董二伟, 武爱莲, 白文斌, 王媛, 焦晓燕. 不同肥力条件下施肥对粒用高粱产量、品质及养分吸收利用的影响. 中国农业科学, 2019, 52: 4166–4176. Wang J S, Dong E W, Wu A L, Bai W B, Wang Y, Jiao X Y. Responses of fertilization on Sorghum grain yield, quality and nutrient utilization to soil fertility. Sci Agric Sin, 2019, 52: 4166–4176 (in Chinese with English abstract).
[22] 山仑, 徐炳成. 论高粱的抗旱性及在旱区农业中的地位. 中国农业科学, 2009, 42: 2342–2348. [23] Stone L R, Schlegel A J, Gwin R E, Khan A H. Response of corn, grain sorghum, and sunflower to irrigation in the high plains of Kansas. Agric Water Manag, 1996, 30: 251–259. [24] Norwood C A, Currie R S. Dryland corn vs. grain sorghum in western Kansas. J Prod Agric, 1997, 10: 152–157. [25] Farré I, Faci J M. Comparative response of maize (Zea mays L.) and Sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a mediterranean environment. Agric Water Manag, 2006, 83: 135–143. [26] Assefa Y, Carter P, Hinds M, Bhalla G, Schon R, Jeschke M, Paszkiewicz S, Smith S, Ciampitti I A. Analysis of long term study indicates both agronomic optimal plant density and increase maize yield per plant contributed to yield gain. Sci Rep, 2018, 8: 4937. [27] Mueller S M, Messina C D, Vyn T J. Simultaneous gains in grain yield and nitrogen efficiency over 70 years of maize genetic improvement. Sci Rep, 2019, 9: 9095. [28] Wang L Q, Ma D L, Liu H Y, Hu S P, Yu X F, Gao J L. Soil fertility differences due to tillage methods modulate maize yield formation at different planting densities. Sci Rep, 2025, 15: 2437. [29]杨文辉, 罗灏程, 董二伟, 王劲松, 王媛, 刘秋霞, 黄晓磊, 焦晓燕. 长期不同施肥和深翻对玉米高粱轮作体系作物钾利用及土壤钾形态的影响. 中国农业科学, 2024, 57: 2390–2403. Yang W H, Luo H C, Dong E W, Wang J S, Wang Y, Liu Q X, Huang X L, Jiao X Y. Effects of long-term fertilization and deep plough on crop potassium utilization and soil potassium forms in maize-sorghum rotation system. Sci Agric Sin, 2024, 57: 2390–2403 (in Chinese with English abstract). [30] Borrás L, Slafer G A, Otegui M E. Seed dry weight response to source–sink manipulations in wheat, maize and soybean: a quantitative reappraisal. Field Crops Res, 2004, 86: 131–146.
[31]刘秋霞, 董二伟, 黄晓磊, 王劲松, 王媛, 焦晓燕. 不同生态区高粱籽粒产量和品质对氮肥施用的响应. 作物学报, 2023, 49: 2766−2776. [32] van Oosterom E J, Hammer G L. Determination of grain number in sorghum. Field Crops Res, 2008, 108: 259–268. [33] Moises C, Andrade F H, Monzon J P, Reussi Calvo N I, Cerrudo A. Nitrogen deficiency in maize fields of the southern pampas does not affect kernel number but reduces weight per kernel. Field Crops Res, 2024, 312: 109394. [34] Adotey R E, Patrignani A, Bergkamp B, Kluitenberg G, Vara Prasad P V, Krishna Jagadish S V. Water-deficit stress alters intra-panicle grain number in sorghum. Crop Sci, 2021, 61: 2680–2695.
[35]张艳慧, 董二伟, 王劲松, 武爱莲, 王媛, 刘秋霞, 姜艳喜, 焦晓燕. 不同株高类型杂交高粱产量、养分吸收及品质对氮肥的响应. 植物营养与肥料学报, 2023, 29: 68–80. [36] Gambín B L, Borrás L. Plasticity of sorghum kernel weight to increased assimilate availability. Field Crops Res, 2007, 100: 272–284. [37] Wu Y Q, Liu J, Zhao L, Wu H, Zhu Y M, Ahmad I, Zhou G S. Abiotic stress responses in crop plants: a multi-scale approach. J Integr Agric, Published online [2024-09-11], https://doi.org/10.1016/j.jia.2024.09.003.
[38]张振博, 屈馨月, 于宁宁, 任佰朝, 刘鹏, 赵斌, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和内源激素作用的影响. 作物学报, 2022, 48: 2366–2376.
[39]王媛, 王劲松, 董二伟, 刘秋霞, 武爱莲, 焦晓燕. 施氮量对高粱籽粒灌浆及淀粉累积的影响. 作物学报, 2023, 49: 1968–1978. [40] McCabe C P, Burke J I. Impact of varying N fertiliser rate and timing on yield formation and grain filling in winter and spring-sown oats. Eur J Agron, 2022, 139: 126550.
[41]王劲松, 白歌, 张艳慧, 申甜雨, 董二伟, 焦晓燕. 长期不同施肥处理对高粱花后叶片衰老、抗氧化酶活性及产量的影响. 作物学报, 2023, 49: 845–855. [42]黄兆福, 李璐璐, 侯梁宇, 高尚, 明博, 谢瑞芝, 侯鹏, 王克如, 薛军, 李少昆. 不同种植区玉米生理成熟后田间站秆脱水的积温需求. 中国农业科学, 2022, 55: 680–691. Huang Z F, Li L L, Hou L Y, Gao S, Ming B, Xie R Z, Hou P, Wang K R, Xue J, Li S K. Accumulated temperature requirement for field stalk dehydration after maize physiological maturity in different planting regions. Sci Agric Sin, 2022, 55: 680–691 (in Chinese with English abstract). |
[1] | 张建鹏, 王国瑞, 别海, 叶飞宇, 马晨晨, 梁小菡, 鲁晓民, 尚霄丽, 曹丽茹. 转录因子ZmMYB153通过ABA信号调节气孔运动增强玉米苗期抗旱性[J]. 作物学报, 2025, 51(7): 1827-1837. |
[2] | 霍建喆, 于爱忠, 王玉珑, 王鹏飞, 尹波, 刘亚龙, 张冬玲, 姜科强, 庞小能, 王凤. 有机肥替代化肥对绿洲灌区甜玉米产量、品质及氮素利用的影响[J]. 作物学报, 2025, 51(7): 1887-1900. |
[3] | 崔鑫, 谷贺贺, 宋毅, 张哲, 刘诗诗, 陆志峰, 任涛, 鲁剑巍. 钾肥用量对油菜产量和钾素积累及因冻害减产程度的影响[J]. 作物学报, 2025, 51(6): 1629-1642. |
[4] | 闫尚龙, 王琦明, 柴强, 殷文, 樊志龙, 胡发龙, 刘志鹏, 韦金贵. 绿洲灌区玉米籽粒产量及品质对密植及间作豌豆的响应[J]. 作物学报, 2025, 51(6): 1665-1675. |
[5] | 杨晓慧, 晏宣军, 杨文妍, 付俊杰, 杨琴, 谢玉心. 玉米ZmKL1优异等位基因调控籽粒大小的效应评估及分子机制解析[J]. 作物学报, 2025, 51(6): 1501-1513. |
[6] | 袁鑫, 赵卓凡, 赵瑞清, 刘孝伟, 郑名敏, 刘育生, 董好胜, 邓丽娟, 曹墨菊, 黄强. 一份玉米小籽粒发育突变体mn-like1的遗传分析与分子鉴定[J]. 作物学报, 2025, 51(6): 1569-1581. |
[7] | 张世博, 李宏岩, 李培富, 任瑞华, 路海东. 自然条件下气温升高3℃至4℃对地膜玉米根-冠衰老和产量的影响[J]. 作物学报, 2025, 51(6): 1599-1617. |
[8] | 郑浩飞, 杨楠, 杜健, 贾改秀, 邹悦, 麻文浩, 王彦婷, 索东让, 赵建华, 孙宁科, 张建文. 西北灌漠土区长期有机无机配施协同提升玉米产量和品质[J]. 作物学报, 2025, 51(6): 1618-1628. |
[9] | 蒋雨洲, 王甲, 张宏媛, 冯文豪, 王鹏, 李玉义. 化肥配施有机物料对玉米田土壤细菌和真菌群落结构的影响[J]. 作物学报, 2025, 51(5): 1378-1388. |
[10] | 周科, 陈鹏飞. 耦合多源无人机遥感数据和机器学习方法的玉米SPAD估测[J]. 作物学报, 2025, 51(5): 1389-1399. |
[11] | 盛倩男, 方娅婷, 赵剑, 杜思垚, 胡行珍, 余秋华, 朱俊, 任涛, 鲁剑巍. 不同养分管理措施对稻田和旱地油菜产量的影响及其对冻害的响应[J]. 作物学报, 2025, 51(5): 1286-1298. |
[12] | 孟凡琦, 房孟颖, 罗艺, 卢霖, 董学瑞, 王亚菲, 郭丽娜, 闫鹏, 董志强, 张凤路. 乙烯利-甜菜碱-水杨酸合剂对夏玉米耐热性和产量的调控效应[J]. 作物学报, 2025, 51(5): 1299-1311. |
[13] | 李雪婷, 任昊, 王洪章, 张吉旺, 赵斌, 任佰朝, 刘莹, 姚海燕, 刘鹏. 盐胁迫对不同耐盐型玉米品种叶片光合性能和干物质积累与分配的影响[J]. 作物学报, 2025, 51(4): 1091-1101. |
[14] | 宋利, 刘广周, 张华, 卢庭启, 卿春燕, 杨云山, 郭晓霞, 胡单, 李少昆, 侯鹏. 密植滴灌水肥一体化对西南夏玉米产量及土壤细菌群落的影响[J]. 作物学报, 2025, 51(4): 992-1004. |
[15] | 李慧敏, 邢志鹏, 张海鹏, 魏海燕, 张洪程, 李光彦. 化学调控及其他栽培措施在小麦抗倒伏高产栽培中的应用[J]. 作物学报, 2025, 51(4): 847-862. |
|