• •
张慧敏,党亚茹,桑佳男,焦文静,孙春怡,庄佳牧,魏玉树,张超,田鹏,刘柏林,宋银*
ZHANG Hui-Min,DANG Ya-Ru,SANG Jia-Nan,JIAO Wen-Jing,SUN Chun-Yi,ZHUANG Jia-Mu,WEI Yu-Shu,ZHANG Chao,TIAN Peng,LIU Bai-Lin,SONG Yin*
摘要:
CEP (C-terminally encoded peptide)编码一类在C-末端附近具有保守基序的分泌小肽,属于多成员的基因家族,在调控植物根系生长、氮素营养及逆境胁迫中起重要作用。本研究对马铃薯(Solanum tuberosum) CEP基因(StCEP)家族成员进行了鉴定,并对StCEP家族成员的理化特征、保守基序、系统进化关系和启动子顺式作用元件进行了分析;利用RNA-seq数据分析了StCEP家族成员在马铃薯不同组织以及响应不同环境信号的表达模式,并筛选受盐胁迫显著诱导的StCEP基因;最后利用外源施加合成StCEP小肽的方法对StCEP小肽的耐盐性功能进行了验证。结果表明,在马铃薯基因组中共鉴定到11个StCEP家族成员,分布在4条不同的染色体上,其编码的蛋白含有1~9个数目不等的CEP基序;StCEP家族成员与拟南芥、番茄CEP成员相互嵌合形成2个大的分支,各分支分别包含21个和26个CEP成员;马铃薯与拟南芥之间仅存在1对CEP基因共线性关系,而与亲缘关系较近的番茄之间存在12对CEP基因共线性关系;StCEP基因的启动子区域主要包括光响应、激素响应、植物生长发育响应和逆境胁迫响应的顺式作用元件;StCEP基因的表达具有明显的组织特异性且受氮素、激素(BAP、IAA、GA3和ABA)、不同生物(致病疫霉、BABA和BTH)与非生物(NaCl)逆境因子的诱导;外施StCEP2小肽可以促进马铃薯不定根的生长并增强马铃薯的耐盐性。本研究为后续深入解析StCEP基因家族成员在马铃薯生长发育与响应环境信号过程中的功能提供了参考信息。
[1] Matsubayashi Y. Posttranslationally modified small-peptide signals in plants. Annu Rev Plant Biol, 2014, 65: 385–413. [2] Tavormina P, De Coninck B, Nikonorova N, De Smet I, Cammue B P A. The plant peptidome: an expanding repertoire of structural features and biological functions. Plant Cell, 2015, 27: 2095–2118. [3] Olsson V, Joos L, Zhu S S, Gevaert K, Butenko M A, De Smet I. Look closely, the beautiful may be small: precursor-derived peptides in plants. Annu Rev Plant Biol, 2019, 70: 153–186. [4] Hou S G, Liu D R, He P. Phytocytokines function as immunological modulators of plant immunity. Stress Biol, 2021, 1: 8. [5] 吕倩雯, 杨永芳. 植物小肽信号生物学功能及其在作物改良中研究进展. 遗传, 2023, 45: 813–828. Lyu Q W, Yang Y F. The biological functions of peptide signaling in plant and the advances on its utilization for crop improvement. Hereditas (Beijing), 2023, 45: 813–828 (in Chinese with English abstract). [6] Tan W Y, Nian H, Tran L P, Jin J, Lian T X. Small peptides: novel targets for modulating plant-rhizosphere microbe interactions. Trends Microbiol, 2024, 32: 1072–1083. [7] Zhang Y W, Duan X L, Xie Y M, Xuan W. Uncovering the function of peptides: bridging hormone signaling, microbial interactions, and root development in plants. New Crops, 2024, 1: 100011. [8] Ji C, Li H, Zhang Z L, Peng S Y, Liu J P, Zhou Y, Yang Y X, Han H B. The power of small signaling peptides in crop and horticultural plants. Crop J, 2025, 13: 656–667. [9] Xiao F, Zhou H P, Lin H H. Decoding small peptides: regulators of plant growth and stress resilience. J Integr Plant Biol, 2025, 67: 596–631. [10] Zhang Z, Han H, Zhao J, Liu Z, Deng L, Wu L, Niu J, Guo Y, Wang G, Gou X, et al. Peptide hormones in plants. Mol Hortic, 2025, 5: 7. [11] Ohyama K, Ogawa M, Matsubayashi Y. Identification of a biologically active, small, secreted peptide in Arabidopsis by in silico gene screening, followed by LC-MS-based structure analysis. Plant J, 2008, 55: 152–160. [12] Delay C, Imin N, Djordjevic M A. CEP genes regulate root and shoot development in response to environmental cues and are specific to seed plants. J Exp Bot, 2013, 64: 5383–5394. [13] Roberts I, Smith S, De Rybel B, Van Den Broeke J, Smet W, De Cokere S, Mispelaere M, De Smet I, Beeckman T. The CEP family in land plants: evolutionary analyses, expression studies, and role in Arabidopsis shoot development. J Exp Bot, 2013, 64: 5371–5381. [14] Sui Z P, Wang T Y, Li H J, Zhang M, Li Y Y, Xu R B, Xing G F, Ni Z F, Xin M M. Overexpression of peptide-encoding OsCEP6.1 results in pleiotropic effects on growth in rice (O. sativa). Front Plant Sci, 2016, 7: 228. [15] de Bang T C, Lundquist P K, Dai X B, Boschiero C, Zhuang Z H, Pant P, Torres-Jerez I, Roy S, Nogales J, Veerappan V, et al. Genome-wide identification of Medicago peptides involved in macronutrient responses and nodulation. Plant Physiol, 2017, 175: 1669–1689. [16] 曾祥翠, 杨永念, 李如月, 蒋学乾, 蒋旭, 徐嫣然, 刘忠宽, 龙瑞才, 康俊梅, 杨青川, 等. 紫花苜蓿MsCEP基因家族的鉴定及其调控根系生长发育功能的分析. 中国农业科学, 2024, 57: 4839–4853. Zeng X C, Yang Y N, Li R Y, Jiang X Q, Jiang X, Xu Y R, Liu Z K, Long R C, Kang J M, Yang Q C, et al. Identification of alfalfa (Medicago sativa) MsCEP genes and functional analysis of its regulation in root growth and development. Sci Agric Sin, 2024, 57: 4839–4853 (in Chinese with English abstract). [17] Li R, An J P, You C X, Shu J, Wang X F, Hao Y J. Identification and expression of the CEP gene family in apple (Malus × domestica). J Integr Agric, 2018, 17: 348–358. [18] Xu R B, Li Y F, Sui Z P, Lan T Y, Song W J, Zhang M, Zhang Y R, Xing J W. A C-terminal encoded peptide, ZmCEP1, is essential for kernel development in maize. J Exp Bot, 2021, 72: 5390–5406. [19] Zhang L, Ren Y, Xu Q, Wan Y M, Zhang S Z, Yang G D, Huang J G, Yan K, Zheng C C, Wu C G. SiCEP3, a C-terminally encoded peptide from Setaria italica, promotes ABA import and signaling. J Exp Bot, 2021, 72: 6260–6273. [20] Liu Y T, Zuo T T, Qiu Z W, Zhuang K Q, Hu S P, Han H B. Genome-wide identification reveals the function of CEP peptide in cucumber root development. Plant Physiol Biochem, 2021, 169: 119–126. [21] Lebedeva M A, Gancheva M S, Kulaeva O A, Zorin E A, Dobychkina D A, Romanyuk D A, Sulima A S, Zhukov V A, Lutova L A. Identification and expression analysis of the C-TERMINALLY ENCODED PEPTIDE family in Pisum sativum L. Int J Mol Sci, 2022, 23: 14875. [22] Qiu Z W, Zhuang K Q, Liu Y T, Ge X M, Chen C, Hu S P, Han H B. Functional characterization of C-TERMINALLY ENCODED PEPTIDE (CEP) family in Brassica rapa L. Plant Signal Behav, 2022, 17: 2021365. [23] Liu D, Shen Z P, Zhuang K Q, Qiu Z W, Deng H M, Ke Q L, Liu H J, Han H B. Systematic annotation reveals CEP function in tomato root development and abiotic stress response. Cells, 2022, 11: 2935. [24] Xu K X, Tian D D, Wang T J, Zhang A J, Elsadek M A Y, Liu W H, Chen L P, Guo Y F. Small secreted peptides (SSPs) in tomato and their potential roles in drought stress response. Mol Hortic, 2023, 3: 17. [25] Pan X L, Deng Z C, Wu R R, Yang Y L, Akher S A, Li W, Zhang Z L, Guo Y F. Identification of CEP peptides encoded by the tobacco (Nicotiana tabacum) genome and characterization of their roles in osmotic and salt stress responses. Plant Physiol Biochem, 2024, 209: 108525. [26] Mei Z Y, Li B, Zhu S H, Li Y, Yao J B, Pan J W, Zhang Y S, Chen W. A genome-wide analysis of the CEP gene family in cotton and a functional study of GhCEP46-D05 in plant development. Int J Mol Sci, 2024, 25: 4231. [27] Taleski M, Jin M, Chapman K, Taylor K, Winning C, Frank M, Imin N, Djordjevic M A. CEP hormones at the nexus of nutrient acquisition and allocation, root development, and plant-microbe interactions. J Exp Bot, 2024, 75: 538–552. [28] Imin N, Mohd-Radzman N A, Ogilvie H A, Djordjevic M A. The peptide-encoding CEP1 gene modulates lateral root and nodule numbers in Medicago truncatula. J Exp Bot, 2013, 64: 5395–5409. [29] Zhu F G, Deng J, Chen H, Liu P, Zheng L H, Ye Q Y, Li R, Brault M, Wen J Q, Frugier F, et al. A CEP peptide receptor-like kinase regulates auxin biosynthesis and ethylene signaling to coordinate root growth and symbiotic nodulation in Medicago truncatula. Plant Cell, 2020, 32: 2855–2877. [30] Zhu F G, Ye Q Y, Chen H, Dong J L, Wang T. Multigene editing reveals that MtCEP1/2/12 redundantly control lateral root and nodule number in Medicago truncatula. J Exp Bot, 2021, 72: 3661–3676. [31] Tabata R, Sumida K, Yoshii T, Ohyama K, Shinohara H, Matsubayashi Y. Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling. Science, 2014, 346: 343–346. [32] Nadiatul A Mohd-Radzman C L. Different pathways act downstream of the CEP peptide receptor CRA2 to regulate lateral root and nodule development. Plant Physiol, 2016, 171: 2536–2548. [33] Luo Z P, Wang J, Li F Y, Lu Y T, Fang Z J, Fu M D, Mysore K S, Wen J Q, Gong J M, Murray J D, et al. The small peptide CEP1 and the NIN-like protein NLP1 regulate NRT2.1 to mediate root nodule formation across nitrate concentrations. Plant Cell, 2023, 35: 776–794. [34] Roy S, Griffiths M, Torres-Jerez I, Sanchez B, Antonelli E, Jain D, Krom N, Zhang S L, York L M, Scheible W R, et al. Application of synthetic peptide CEP1 increases nutrient uptake rates along plant roots. Front Plant Sci, 2021, 12: 793145. [35] Hsieh Y H, Wei Y H, Lo J C, Pan H Y, Yang S Y. Arbuscular mycorrhizal symbiosis enhances tomato lateral root formation by modulating CEP2 peptide expression. New Phytol, 2022, 235: 292–305. [36] Smith S, Zhu S S, Joos L, Roberts I, Nikonorova N, Vu L D, Stes E, Cho H, Larrieu A, Xuan W, et al. The CEP5 peptide promotes abiotic stress tolerance, as revealed by quantitative proteomics, and attenuates the AUX/IAA equilibrium in Arabidopsis. Mol Cell Proteom, 2020, 19: 1248–1262. [37] Rzemieniewski J, Leicher H, Lee H K, Broyart C, Nayem S, Wiese C, Maroschek J, Camgöz Z, Olsson Lalun V, Djordjevic M A, et al. CEP signaling coordinates plant immunity with nitrogen status. Nat Commun, 2024, 15: 10686. [38] Wang X Y, Yu W L, Yuan Q, Chen X Y, He Y X, Zhou J G, Xun Q Q, Wang G D, Li J, Meng X Z. The pathogen-induced peptide CEP14 is perceived by the receptor-like kinase CEPR2 to promote systemic disease resistance in Arabidopsis. Plant Physiol, 2024, 197: kiae549. [39] 徐建飞, 金黎平. 马铃薯遗传育种研究: 现状与展望. 中国农业科学, 2017, 50: 990–1015. Xu J F, Jin L P. Advances and perspectives in research of potato genetics and breeding. Sci Agric Sin, 2017, 50: 990–1015 (in Chinese with English abstract). [40] Qu L, Huang X Q, Su X, Zhu G Q, Zheng L L, Lin J, Wang J W, Xue H W. Potato: from functional genomics to genetic improvement. Mol Hortic, 2024, 4: 34. [41] 赵朋, 陈广侠, 张宴萍, 杨晓慧, 刘芳, 董道峰. 马铃薯苗期耐碱性鉴定方法及86份种质资源耐碱性综合评价. 作物学报, 2023, 49: 923–2934. Zhao P, Chen G X, Zhang Y P, Yang X H, Liu F, Dong D F. Alkaline tolerance identification method of potato seedlings and comprehensive assessment of alkaline tolerance of 86 kinds of potato germplasms. Acta Agron Sin, 2023, 49: 2923–2934 (in Chinese with English abstract). [42] Ogilvie H A, Imin N, Djordjevic M A. Diversification of the C-TERMINALLY ENCODED PEPTIDE (CEP) gene family in angiosperms, and evolution of plant-family specific CEP genes. BMC Genomics, 2014, 15: 870. [43] Shen Z P, Zuo T T, Xia H L, Ai S C, Tao Q, Zeng C, Guo X P, Han H B. Synthetic CsCEP3 peptide attenuates salinity stress via ROS and ABA signaling in cucumber primary root. Horticulturae, 2023, 9: 921. [44] Aggarwal S, Rathore R S, Rakhi R, Kumari S, Singla-Pareek S L, Mustafiz A. OsCEP8-mediated abiotic stress response is associated with auxin and sugar homeostasis in plants. Environ Exp Bot, 2025, 229: 106082. [45] Chen C J, Wu Y, Li J W, Wang X, Zeng Z H, Xu J, Liu Y L, Feng J T, Chen H, He Y H, et al. TBtools-II: a “one for all, all for one” bioinformatics platform for biological big-data mining. Mol Plant, 2023, 16: 1733–1742. [46] Tiwari J K, Buckseth T, Zinta R, Saraswati A, Singh R K, Rawat S, Dua V K, Chakrabarti S K. Transcriptome analysis of potato shoots, roots and stolons under nitrogen stress. Sci Rep, 2020, 10: 1152. [47] Jing Q K, Hou H L, Meng X K, Chen A R, Wang L X, Zhu H S, Zheng S, Lyu Z Y, Zhu X B. Transcriptome analysis reveals the proline metabolic pathway and its potential regulation TF-hub genes in salt-stressed potato. Front Plant Sci, 2022, 13: 1030138. [48] Taleski M, Imin N, Djordjevic M A. CEP peptide hormones: key players in orchestrating nitrogen-demand signalling, root nodulation, and lateral root development. J Exp Bot, 2018, 69: 1829–1836. [49] Roberts I, Smith S, Stes E, De Rybel B, Staes A, van de Cotte B, Njo M F, Dedeyne L, Demol H, Lavenus J, et al. CEP5 and XIP1/CEPR1 regulate lateral root initiation in Arabidopsis. J Exp Bot, 2016, 67: 4889–4899. |
[1] | 贾小霞, 齐恩芳, 文国宏, 马胜, 黄伟, 吕和平, 李建武, 曲亚英, 丁宁. 中早熟马铃薯‘陇薯20号’高效再生体系建立及抗草铵膦种质创制[J]. 作物学报, 2025, 51(9): 2285-2294. |
[2] | 卓峰琦, 唐振三, 雷雨俊, 程李香, 赵甜甜, 吕汰, 杨晨, 张峰. 基于烹饪方式及回生温度筛选低升糖马铃薯品种(系)[J]. 作物学报, 2025, 51(9): 2538-2546. |
[3] | 朱锦程, 杨秋华, 程李香, 李文丽, 石明明, 李惠霞, 张峰. 马铃薯抗南方根结线虫种质资源筛选及相关生理反应分析[J]. 作物学报, 2025, 51(9): 2307-2317. |
[4] | 尹丽娜, 张锐, 陈国欢, 白磊, 李俊, 郭华春, 杨芳. 不同马铃薯品种块茎创伤愈合能力的比较[J]. 作物学报, 2025, 51(9): 2399-2411. |
[5] | 孟然, 李赵嘉, 冯薇, 陈悦, 刘路平, 杨春燕, 鲁雪林, 王秀萍. 大豆不同生育时期耐盐性综合评价及耐盐种质筛选[J]. 作物学报, 2025, 51(8): 1991-2008. |
[6] | 邵顺伟, 陈卓, 兰振东, 蔡兴奎, 邹华芬, 李晨曦, 唐景华, 朱熙, 张彧, 董建科, 金辉, 宋波涛. 基于BSA-seq技术的块茎芽眼深度QTL定位分析[J]. 作物学报, 2025, 51(7): 1725-1735. |
[7] | 李秋云, 李世贵, 范军亮, 刘昊天, 赵晓斌, 吕硕, 王艳浩, 岳云, 张宁, 司怀军. 离子锌和纳米锌对马铃薯生理特性、产量及品质的影响[J]. 作物学报, 2025, 51(7): 1838-1849. |
[8] | 杨双, 白磊, 郭华春, 缪亚生, 李俊. 马铃薯叶片表皮毛形态特征、类型与发育过程[J]. 作物学报, 2025, 51(6): 1582-1598. |
[9] | 徐杰, 夏露露, 唐振三, 李文丽, 赵甜甜, 程李香, 张峰. 马铃薯块茎蒸制和烘焙后嗅味品质分析[J]. 作物学报, 2025, 51(5): 1409-1420. |
[10] | 赵喜娟, 张帆, 刘圣宣, 覃骏, 陈惠兰, 林原, 罗红兵, 刘易, 宋波涛, 胡新喜, 王恩爽. 4种马铃薯内源激素提取方法优化及其在块茎解除休眠过程中的含量分析[J]. 作物学报, 2025, 51(4): 1050-1060. |
[11] | 蒋优, 马雪融, 张博, 李陈建. 苏丹草种子萌发期耐盐性评价及耐盐种质筛选[J]. 作物学报, 2025, 51(3): 835-844. |
[12] | 苏明, 吴佳瑞, 洪自强, 李翻过, 周甜, 吴宏亮, 康建宏. 西北半干旱区马铃薯块茎淀粉形成及产量对磷肥减量的响应[J]. 作物学报, 2025, 51(3): 713-727. |
[13] | 宋倩娜, 宋慧洋, 李京昊, 段永红, 梅超, 冯瑞云. 马铃薯转录因子StFBH3对非生物逆境胁迫的响应分析[J]. 作物学报, 2025, 51(1): 247-259. |
[14] | 祁稼民, 许春苗, 肖斌. 马铃薯TIFY基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(9): 2297-2309. |
[15] | 刘欣玥, 郭潇阳, 王欣茹, 辛大伟, 关荣霞, 邱丽娟. 大豆萌发期耐盐性鉴定方法建立及耐盐大豆资源筛选[J]. 作物学报, 2024, 50(8): 2122-2130. |
|