欢迎访问作物学报,今天是

作物学报

• •    

苗期喷施外源物质对迟播油菜越冬期抗寒性及产量的调控效应

杨书婷1,何盛浩2,赵碧云2,贺嘉2,刘晶1,杨梦瑶1,陈爱武3,王晶1,赵杰1,蒯婕1,汪波1,徐正华1,*,周广生1   

  1. 1 华中农业大学植物科学技术学院 / 农业农村部长江中游作物生理生态与耕作重点实验室, 湖北武汉 430070; 2 荆门市气象局, 湖北荆门 448000; 3 湖北省油菜办公室, 湖北武汉 430070
  • 收稿日期:2025-01-06 修回日期:2025-07-09 接受日期:2025-07-09
  • 通讯作者: 徐正华, E-mail: xzh@mail.hzau.edu.cn
  • 基金资助:
    本研究由湖北省重点研发计划项目(2023BBB028), 华中农业大学自主科技创新项目(2023ZKPY007)和湖北省揭榜挂帅项目(HBZY2023B001-01)资助。 

Effects of spraying exogenous substances at seedling stage on cold resistance and yield of late-seeded rapeseed during overwintering

YANG Shu-Ting1, HE Sheng-Hao2, ZHAO Bi-Yun2, HE Jia2, LIU Jing1, YANG Meng-Yao1, CHEN Ai-Wu3, WANG Jing1, ZHAO Jie1, KUAI Jie1, WANG Bo1, XU Zheng-Hua1,*, ZHOU Guang-Sheng1   

  1. 1 College of Plant Science and Technology, Huazhong Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System for the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China; 2 Jingmen Meteorological Bureau, Jingmen 448000, Hubei, China; 3 Hubei Rapeseed Office, Wuhan 430070, Hubei, China
  • Received:2025-01-06 Revised:2025-07-09 Accepted:2025-07-09
  • Contact: 徐正华, E-mail: xzh@mail.hzau.edu.cn
  • Supported by:
    This study was supported by the Key Research and Development Program of Hubei Province (2023BBB028), the Fundamental Research Funds for the Central Universities (2023ZKPY007) and the Hubei Provincial Project (HBZY2023B001-01).

摘要: 稻-稻-油是长江流域主要种植模式之一,但晚稻、再生稻与油菜茬口矛盾突出,导致油菜播种期推迟。迟播条件下,油菜常因冬前有效积温下降、叶片数少、干物质积累量不足、抗倒伏能力下降,导致籽粒产量低而不稳。喷施外源物质是一种快速高效、省工节本的调控技术,可以提高油菜的抗倒伏性及产量。本研究以华油杂137为试验材料,于苗期分别喷施5种不同浓度的外源物质:0.5、1.0、1.5 mg L?1的三十烷醇(A1、A2、A3),10、20、40 mg L?1的赤霉素(B1、B2、B3),10、20、30 mg L?1的复硝酚钠(C1、C2、C3),10、20、30 mg L?1的6-苄基腺嘌呤(D1、D2、D3)及12.5、25、50 mg L?1的烯效唑(E1、E2、E3),以清水处理(CK)作为对照,研究苗期喷施外源物质对迟播油菜抗寒性及产量的影响。结果表明:(1) 综合2年的产量、农艺性状及抗寒相关指标等得出,对迟播油菜抗寒性、抗倒伏能力及产量具有显著促进作用的外源物质及浓度为:30 mg L?1的复硝酚钠、30 mg L?1的6-苄基腺嘌呤、40 mg L?1的赤霉素和1.0 mg L?1的三十烷醇。与对照相比,30 mg L?1的复硝酚钠处理的2年产量均最高,分别比CK增产14.4%、12.9%。30 mg L?1的复硝酚钠、30 mg L?1的6-苄基腺嘌呤和40 mg L?1的赤霉素处理均可显著提高迟播油菜苗期、蕾薹期、花期的单株叶面积,增加各生育期的干物质积累量。(2) 1.0 mg L?1的三十烷醇和30 mg L?1的6-苄基腺嘌呤处理显著增加了茎秆抗折力,降低了倒伏角度,提高了迟播油菜的抗倒伏能力。(3) 1.0 mg L?1的三十烷醇、40 mg L?1的赤霉素、30 mg L?1的复硝酚钠处理可显著增加越冬期油菜叶片中可溶性糖含量,提高抗氧化酶活性,减少活性氧积累和丙二醛含量,提高越冬期的抗寒性。本研究可为长江流域迟播油菜抗逆稳产提供技术支撑。

关键词: 油菜, 迟播, 叶面喷施, 外源物质, 产量, 抗寒性

Abstract:

The rice–rice–rapeseed rotation is one of the predominant cropping systems in the Yangtze River Basin. However, competition among late-season rice, ratoon rice, and rapeseed often delays the sowing of rapeseed. This postponement reduces the effective accumulated temperature before winter, resulting in fewer leaves, limited dry matter accumulation, and weakened lodging resistance, ultimately leading to low and unstable seed yields. The foliar application of exogenous substances is a rapid, efficient, and labor-saving agronomic strategy that can enhance lodging resistance and improve yield in rapeseed. In this study, the cultivar Huayouza 137 was used as the experimental material. Five types of exogenous substances were applied at the seedling stage (four-leaf stage) in varying concentrations: triacontanol (0.5, 1.0, 1.5 mg L?1; A1, A2, A3), gibberellin (10, 20, 40 mg L?1; B1, B2, B3), compound sodium nitrophenolate (10, 20, 30 mg L?1; C1, C2, C3), 6-benzyladenine (10, 20, 30 mg L?1; D1, D2, D3), and uniconazole (12.5, 25, 50 mg L?1; E1, E2, E3). Water treatment was used as the control (CK). Yield and its components, lodging-related traits, reactive oxygen species (ROS) accumulation, and antioxidant enzyme activities during the overwintering period were evaluated. The results indicated the following: (1) Based on two years of data on yield, agronomic traits, and cold resistance indicators, the exogenous treatments that significantly enhanced cold tolerance, lodging resistance, and yield in delayed-sowing rapeseed were 30 mg L?1 compound sodium nitrophenolate, 30 mg L?1 6-benzyladenine, 40 mg L?1 gibberellin, and 1.0 mg L?1 triacontanol. Among these, 30 mg L?1 compound sodium nitrophenolate consistently produced the highest yield in both years, increasing by 14.4% and 12.9% compared to the control. Treatments with 30 mg L?1 compound sodium nitrophenolate, 30 mg L?1 6-benzyladenine, and 40 mg L?1 gibberellin significantly increased leaf area per plant at the seedling, budding, and flowering stages, and improved dry matter accumulation at each stage. (2) Application of 1.0 mg L?1 triacontanol and 30 mg L?1 6-benzyladenine significantly enhanced stem strength, reduced lodging angle, and improved lodging resistance in delayed-sowing rapeseed. (3) Treatments with 1.0 mg L?1 triacontanol, 40 mg L?1 gibberellin, and 30 mg L?1 compound sodium nitrophenolate significantly increased soluble sugar content in overwintering leaves, enhanced antioxidant enzyme activity, and reduced ROS levels and malondialdehyde content, thereby improving cold tolerance during winter. This study provides a technical basis for enhancing stress resistance and ensuring stable yields of delayed-sowing rapeseed in the Yangtze River Basin.

Key words: rapeseed, late-seeded, foliar spraying, exogenous substances, yield, cold resistance

[1] 王瑞元. 2022年我国粮油产销和进出口情况. 中国油脂, 2023, 48(6): 1–7.
Wang R Y. Production, marketing, import and export of grain and oil in China in 2022. China Oils Fats, 2023, 48(6): 1–7 (in Chinese).

[2] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40: 613–617.
Wang H Z. New-demand oriented oilseed rape industry developing strategy. Chin J Oil Crop Sci, 2018, 40: 613–617 (in Chinese with English abstract).

[3] 蒯婕, 李真, 汪波, 刘芳, 叶俊, 周广生. 密度和行距配置对油菜苗期性状及产量形成的影响. 中国农业科学, 2021, 54: 2319–2332.
Kuai J, Li Z, Wang B, Liu F, Ye J, Zhou G S. Effects of density and row spacing on seedling traits of rapeseed and seed yield. Sci Agric Sin, 2021, 54: 2319–2332 (in Chinese with English abstract).

[4] 张树杰, 王汉中. 我国油菜生产应对气候变化的对策和措施分析. 中国油料作物学报, 2012, 34: 114–122.
Zhang S J, Wang H Z. Policies and strategies analyses of rapeseed production response to climate change in China. Chin J Oil Crop Sci, 2012, 34: 114–122 (in Chinese with English abstract).

[5] Wang C C, Chen A W, Wang J J, Zhang D X, Tang S, Zhou G S, Hu L Y, Wu J S, Fu T D. Growth and yield formation of direct-seeding rapeseed under no-tillage cultivation in double rice cropping area in Hubei province. Acta Agron Sin, 2011, 37: 694–702.

[6] Li X Y, Wu L T, Qiu G L, Wang T, Liu C H, Yang Y M, Feng B, Chen C, Zhang W, Liu Z B. Effects of sowing season on agronomic traits and fatty acid metabolic profiling in three Brassica napus L. cultivars. Metabolites, 2019, 9: 37.

[7] 汪波, 宋丽君, 王宗凯, 王积军, 熊明清, 甘丽, 刘芳, 张哲, 蒯婕, 傅廷栋, 等. 我国饲料油菜种植及应用技术研究进展. 中国油料作物学报, 2018, 40: 695–701. 

Wang B, Song L J, Wang Z K, Wang J J, Xiong M Q, Gan L, Liu F, Zhang Z, Kuai J, Fu T D, et al. Production and feeding technology of fodder−rapeseed in China. Chin J Oil Crop Sci, 2018, 40: 695–701 (in Chinese with English abstract).

[8] 杨阳, 蒯婕, 吴莲蓉, 刘婷婷, 孙盈盈, 左青松, 周广生, 吴江生. 多效唑处理对直播油菜机械收获相关性状及产量的影响. 作物学报, 2015, 41: 938–945.
Yang Y, Kuai J, Wu L R, Liu T T, Sun Y Y, Zuo Q S, Zhou G S, Wu J S. Effects of paclobutrazol on yield and mechanical harvest characteristics of winter rapeseed with direct seeding treatment. Acta Agron Sin, 2015, 41: 938–945 (in Chinese with English abstract).

[9] Kuai J, Sun Y Y, Guo C, Zhao L, Zuo Q S, Wu J S, Zhou G S. Root-applied silicon in the early bud stage increases the rapeseed yield and optimizes the mechanical harvesting characteristics. Field Crops Res, 2017, 200: 88–97.

[10] Islam S, Mohammad F. Triacontanol as a dynamic growth regulator for plants under diverse environmental conditions. Physiol Mol Biol Plants, 2020, 26: 871–883.

[11] 郭茂畅, 陈杜娟, 袁金展, 张哲, 蒋博, 杨书婷, 陈敏, 郭安达, 王琪, 蒯婕, 等. 叶面喷施调节剂对迟播油菜越冬期氮素利用和产量的影响. 作物学报, 2024, 50: 2870–2882.
Guo M C, Chen D J, Yuan J Z, Zhang Z, Jiang B, Yang S T, Chen M, Guo A D, Wang Q, Kuai J, et al. Effect of foliar spraying regulators on nitrogen utilization during the overwintering stage and yield of late−sowing rapeseed. Acta Agron Sin, 2024, 50: 2870–2882 (in Chinese with English abstract).

[12] Raza A, Su W, Jia Z Q, Luo D, Zhang Y, Gao A, Hussain M A, Mehmood S S, Cheng Y, Lyu Y, et al. Mechanistic insights into trehalose-mediated cold stress tolerance in rapeseed (Brassica napus L.) seedlings. Front Plant Sci, 2022, 13: 857980.

[13] 王先领, 姜岳, 雷贻忠, 肖胜男, 厍惠洁, 段圣省, 黄铭, 蒯婕, 汪波, 王晶, 等. 外源物质浸种对迟播油菜越冬期抗寒性及产量的影响. 作物学报, 2024, 50: 1271–1286.
Wang X L, Jiang Y, Lei Y Z, Xiao S N, She H J, Duan S X, Huang M, Kuai J, Wang B, Wang J, et al. Effects of seed soaking with exogenous substances on late-seeded rapeseed cold resistance of during overwintering period and yield. Acta Agron Sin, 2024, 50: 1271–1286 (in Chinese with English abstract).

[14] Batool M, El-Badri A M, Wang Z K, Mohamed I A A, Yang H Y, Ai X Y, Salah A, Hassan M U, Sami R, Kuai J, et al. Rapeseed morpho-physio-biochemical responses to drought stress induced by PEG-6000. Agronomy, 2022, 12: 579.

[15] 朱亚迪, 王慧琴, 王洪章, 任昊, 吕建华, 赵斌, 张吉旺, 任佰朝, 殷复伟, 刘鹏. 不同夏玉米品种大喇叭口期耐热性评价和鉴定指标筛选. 作物学报, 2022, 48: 3130–3143.
Zhu Y D, Wang H Q, Wang H Z, Ren H, Lyu J H, Zhao B, Zhang J W, Ren B Z, Yin F W, Liu P. Evaluation and identification index of heat tolerance in different summer maize varieties at V12 stage. Acta Agron Sin, 2022, 48: 3130–3143 (in Chinese with English abstract).

[16] 叶宗裕. 关于多指标综合评价中指标正向化和无量纲化方法的选择. 浙江统计, 2003, (4): 25–26.
Ye Z Y. On the selection of index positive and dimensionless methods in multi-index comprehensive evaluation. Zhejiang Stat, 2003, (4): 25–26 (in Chinese).

[17] Özer H, Oral E, Doǧru Ü. Relationships between yield and yield components on currently improved spring rapeseed cultivars. Turk J Agric For, 1999, 23: 603–608.

[18] Shi J Q, Zhan J P, Yang Y H, Ye J, Huang S M, Li R Y, Wang X F, Liu G H, Wang H Z. Linkage and regional association analysis reveal two new tightly-linked major-QTLs for pod number and seed number per pod in rapeseed (Brassica napus L.). Sci Rep, 2015, 5: 14481.

[19] 杜雪. 油菜生殖生长阶段赤霉素对产油量与籽粒品质的影响及机制. 浙江大学博士学位论文, 浙江杭州, 2015.
Du X. Effect of Gibberellin at Reproductive Stage on Oil Production and Seed Metabolites in Oilseed Rape (Brassica napus L.). PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2015 (in Chinese with English abstract).

[20] Karp A, Shield I. Bioenergy from plants and the sustainable yield challenge. New Phytol, 2008, 179: 15–32.

[21] Agüera E, De la Haba P. Leaf senescence in response to elevated atmospheric CO2 concentration and low nitrogen supply. Biol Plant, 2018, 62: 401–408.

[22] Waqas M A, Khan I, Akhter M J, Ali Noor M, Ashraf U. Exogenous application of plant growth regulators (PGRs) induces chilling tolerance in short-duration hybrid maize. Environ Sci Pollut Res Int, 2017, 24: 11459–11471.

[23] Luo K, Xie C, Wang J, Du Q, Cheng P, Wang T, Wu Y C, Yang W Y, Yong T W. Uniconazole, 6-benzyladenine, and diethyl aminoethyl hexanoate increase the yield of soybean by improving the photosynthetic efficiency and increasing grain filling in maize-soybean relay strip intercropping system. J Plant Growth Regul, 2021, 40: 1869–1880.

[24] He Y L, Liu Y L, Cao W X, Huai M F, Xu B G, Huang B R. Effects of salicylic acid on heat tolerance associated with antioxidant metabolism in Kentucky bluegrass. Crop Sci, 2005, 45: 988–995.

[25] Li Z G, Xie L R, Li X J. Hydrogen sulfide acts as a downstream signal molecule in salicylic acid-induced heat tolerance in maize (Zea mays L.) seedlings. J Plant Physiol, 2015, 177: 121–127.

[26] 郑伟, 叶川, 肖国滨, 陈明, 李亚贞, 黄天宝, 肖小军, 刘小三, 朱昌兰. 油−稻共生期对谷林套播油菜苗期性状及产量形成的影响. 中国农业科学, 2015, 48: 4254–4263.
Zheng W, Ye C, Xiao G B, Chen M, Li Y Z, Huang T B, Xiao X J, Liu X S, Zhu C L. Effects of symbiotic period on seedling traits and yield components of interplanting rapeseed in rice. Sci Agric Sin, 2015, 48: 4254–4263 (in Chinese with English abstract).

[27] Anwar S, Lei H X, Kuai J, Khan S, Fahad S, Zhou G S. Soaking seeds of winter rapeseed with Quizalofop-P-Ethyl alters plant growth and improves yield in a rice-rapeseed cropping system. Field Crops Res, 2017, 208: 11–17.

[28] Wang W L, Wang X, Huang M, Cai J, Zhou Q, Dai T B, Jiang D. Alleviation of field low−temperature stress in winter wheat by exogenous application of salicylic acid. J Plant Growth Regul, 2021, 40: 811–823.

[29] Turk H, Erdal S. Melatonin alleviates cold-induced oxidative damage in maize seedlings by up-regulating mineral elements and enhancing antioxidant activity. J Plant Nutr Soil Sci, 2015, 178: 433–439.

[30] Ozfidan−Konakci C, Yildiztugay E, Yildiztugay A, Kucukoduk M. Cold stress in soybean (Glycine max L.) roots: exogenous gallic acid promotes water status and increases antioxidant activities. Bot Serb, 2019, 43: 59–71.

[31] Shi X L, Sun Z Q, Xue X, Xu H M, Wu Y, Zhang Y, Yang Y Q, Han S Y, Zhao R F, Zhang M Y, et al. Amelioration of hypothermia−induced damage on peanut by exogenous application of chitooligosaccharide. Agriculture, 2023, 13: 217.

[32] Maruyama K, Urano K, Yoshiwara K, Morishita Y, Sakurai N, Suzuki H, Kojima M, Sakakibara H, Shibata D, Saito K, et al. Integrated analysis of the effects of cold and dehydration on rice metabolites, phytohormones, and gene transcripts. Plant Physiol, 2014, 164: 1759–1771.

[33] Wu Z G, Jiang W, Chen S L, Mantri N, Tao Z M, Jiang C X. Insights from the cold transcriptome and metabolome of Dendrobium officinale: global reprogramming of metabolic and gene regulation networks during cold acclimation. Front Plant Sci, 2016, 7: 1653.

[34] 李凌雨, 周琦锐, 李洋, 张安民, 王贝贝, 马尚宇, 樊永惠, 黄正来, 张文静. 外源6-BA调控孕穗期低温后小麦幼穗发育的转录组分析. 作物学报, 2023, 49: 1808–1817.
Li L Y, Zhou Q R, Li Y, Zhang A M, Wang B B, Ma S Y, Fan Y H, Huang Z L, Zhang W J. Transcriptome analysis of exogenous 6-BA in regulating young spike development of wheat after low temperature at booting stage. Acta Agron Sin, 2023, 49: 1808–1817 (in Chinese with English abstract).

[35] Verma V, Ravindran P, Kumar P P. Plant hormone-mediated regulation of stress responses. BMC Plant Biol, 2016, 16: 86.

[36] Sun Y J, He Y H, Irfan A R, Liu X M, Yu Q Q, Zhang Q, Yang D G. Exogenous brassinolide enhances the growth and cold resistance of maize (Zea mays L.) seedlings under chilling stress. Agronomy, 2020, 10: 488.

[37] Belintani N G, Guerzoni J T S, Moreira R M P, Vieira L G E. Improving low−temperature tolerance in sugarcane by expressing the ipt gene under a cold inducible promoter. Biol Plant, 2012, 56: 71–77.

[38] Jeon J, Kim J. Arabidopsis response regulator1 and Arabidopsis histidine phosphotransfer protein2 (AHP2), AHP3, and AHP5 function in cold signaling. Plant Physiol, 2013, 161: 408–424.

[39] Lu J Z, Guan P X, Gu J M, Yang X L, Wang F, Qi M F, Li T L, Liu Y F. Exogenous DA-6 improves the low night temperature tolerance of tomato through regulating cytokinin. Front Plant Sci, 2021, 11: 599111.

[40] Liu D X, Yan G B, Wang S B, Yu L Q, Lin W, Lu S P, Guo L, Yang Q Y, Dai C. Comparative transcriptome profiling reveals the multiple levels of crosstalk in phytohormone networks in Brassica napus. Plant Biotechnol J, 2023, 21: 1611–1627.

[41] Tiwari M, Kumar R, Subramanian S, Doherty C J, Krishna Jagadish S V. Auxin-cytokinin interplay shapes root functionality under low-temperature stress. Trends Plant Sci, 2023, 28: 447–459.

[1] 武斌, 曹永刚, 胡发龙, 殷文, 樊志龙, 范虹, 柴强. 免耕轮作对减氮小麦产量下降的补偿效果[J]. 作物学报, 2025, 51(7): 1959-1968.
[2] 吴柳格, 陈坚, 张鑫, 邓艾兴, 宋振伟, 郑成岩, 张卫建. 近二十年国审冬小麦品种的产量与品质性状变化趋势研究[J]. 作物学报, 2025, 51(7): 1814-1826.
[3] 李秋云, 李世贵, 范军亮, 刘昊天, 赵晓斌, 吕硕, 王艳浩, 岳云, 张宁, 司怀军. 离子锌和纳米锌对马铃薯生理特性、产量及品质的影响[J]. 作物学报, 2025, 51(7): 1838-1849.
[4] 赵佳雯, 李子洪, 欧星雨, 王伊朗, 丁小飞, 梁乐瑶, 丁文金, 张海鹏, 马尚宇, 樊永惠, 黄正来, 张文静. 氮肥与钾肥运筹对弱筋小麦籽粒产量、品质的影响[J]. 作物学报, 2025, 51(7): 1914-1933.
[5] 李炳霖, 叶晓磊, 肖红, 肖国滨, 吕伟生, 刘君权, 任涛, 陆志峰, 鲁剑巍. 镁肥用量对油菜产量和镁吸收量及因冻害减产程度的影响[J]. 作物学报, 2025, 51(7): 1850-1860.
[6] 霍建喆, 于爱忠, 王玉珑, 王鹏飞, 尹波, 刘亚龙, 张冬玲, 姜科强, 庞小能, 王凤. 有机肥替代化肥对绿洲灌区甜玉米产量、品质及氮素利用的影响[J]. 作物学报, 2025, 51(7): 1887-1900.
[7] 董伟进, 张亚封, 李启云, 路杨, 张正坤, 隋丽. CO2浓度升高条件下球孢白僵菌定殖对玉米生长及产量的影响[J]. 作物学报, 2025, 51(7): 1874-1886.
[8] 陈如雪, 孙丽芳, 张芯源, 牟海萌, 张永新, 袁丽雪, 彭仕乐, 王壮壮, 王永华. 秸秆还田与微生物菌剂配施对冬小麦旗叶碳氮代谢及产量形成的影响[J]. 作物学报, 2025, 51(7): 1901-1913.
[9] 李世鹏, 陈才武, 张晶, 吕恬, 傅廷栋, 易斌. 基于改进U-Net++模型的油菜pol TCMS温敏两系育性等级鉴定及温度育性关系的量化研究[J]. 作物学报, 2025, 51(6): 1423-1434.
[10] 李子翔, 黄绒, 王志超, 李鸿雁, 谭俊行, 程宇, 杜雪竹, 盛锋. 聚-γ-谷氨酸对直播稻抗倒伏性的影响[J]. 作物学报, 2025, 51(6): 1654-1664.
[11] 崔鑫, 谷贺贺, 宋毅, 张哲, 刘诗诗, 陆志峰, 任涛, 鲁剑巍. 钾肥用量对油菜产量和钾素积累及因冻害减产程度的影响[J]. 作物学报, 2025, 51(6): 1629-1642.
[12] 闫尚龙, 王琦明, 柴强, 殷文, 樊志龙, 胡发龙, 刘志鹏, 韦金贵. 绿洲灌区玉米籽粒产量及品质对密植及间作豌豆的响应[J]. 作物学报, 2025, 51(6): 1665-1675.
[13] 张世博, 李宏岩, 李培富, 任瑞华, 路海东. 自然条件下气温升高3℃至4℃对地膜玉米根-冠衰老和产量的影响[J]. 作物学报, 2025, 51(6): 1599-1617.
[14] 赵刚, 张建军, 党翼, 樊廷录, 王磊, 周刚, 王淑英, 李兴茂, 倪胜利, 米文博, 周旭姣, 程万莉, 李尚中. 黄土旱塬区秸秆覆盖量对不同降雨年型土壤水温效应和冬小麦产量的影响[J]. 作物学报, 2025, 51(6): 1643-1653.
[15] 郑浩飞, 杨楠, 杜健, 贾改秀, 邹悦, 麻文浩, 王彦婷, 索东让, 赵建华, 孙宁科, 张建文. 西北灌漠土区长期有机无机配施协同提升玉米产量和品质[J]. 作物学报, 2025, 51(6): 1618-1628.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!