• •
赵慧霞1,**,郭彦丽2,**,郑渝泠1,何棱1,陈锐1,王珊珊1,曾长立1,邹珺3,4,沈金雄3,4,傅廷栋3,刘小云1,* ,万何平1,*
ZHAO Hui-Xia1,**,GUO Yan-Li2,**,ZHENG Yu-Ling1,HE Ling1,CHEN Rui1,WANG Shan-Shan1,ZENG Chang-Li1,ZOU Jun3,4,SHEN Jin-Xiong3,4,FU Ting-Dong3,LIU Xiao-Yun1,*,WAN He-Ping1,*
摘要:
为了研究碱胁迫条件下不同油菜材料的差异表达基因,为耐碱油菜品种选育和耐碱胁迫的分子机制探究提供参考,本研究选取耐碱油菜华油杂62 (H62)和不耐碱油菜中双11改良系(ZS11)为试验材料,设置对照和0.10% Na2CO3胁迫处理,利用RNA-Seq技术对萌发期的地上部和地下部的基因表达进行分析,通过生物信息学方法对差异基因的生物学功能和代谢途径进行研究,筛选可能参与碱胁迫调控的基因,了解油菜萌发期响应碱胁迫的分子机制。结果表明,与对照相比,0.10% Na2CO3胁迫下H62和ZS11地上部和地下部生长均显著受到抑制。转录组分析显示,在0.10% Na2CO3胁迫处理下,H62和ZS11地下部分别筛选出1860个和6358个上调表达基因,以及952个和6747个下调表达基因;H62和ZS11地上部分别筛选出3776个和5385个上调表达基因,以及1336个和3051个下调表达基因。ZS11的地上部与地下部差异表达基因(deferentially expressed genes, DEGs)数量均显著多于H62,尤其是地下部差异更大。GO和KEGG富集分析显示,2个品种中的DEGs显著富集于不同的GO功能与KEGG通路,表明其响应机制存在差异。H62主要通过谷胱甘肽代谢、醛固酮代谢、丙酮酸盐代谢、三羧酸循环和类黄酮合成等通路响应碱胁迫。ZS11碱胁迫后,离子通路、钾离子跨膜转运、ABC转运因子、DNA复制和蛋白酶体等通路发生显著变化。本研究通过建立耐碱/敏感油菜品种(系)的特异性转录调控图谱,揭示油菜萌发期耐碱胁迫的核心代谢通路及品种(系)特异性调控机制,为耐碱种质创制提供了关键候选基因和理论依据。
[1] Parihar P, Singh S, Singh R, Singh V P, Prasad S M. Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res Int, 2015, 22: 4056–4075. [2] Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59: 651–681. [3] Shabala S. Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot, 2013, 112: 1209–1221. [4] Jin H, Kim H R, Plaha P, Liu S K, Park J Y, Piao Y Z, Yang Z H, Jiang G B, Kwak S S, An G, et al. Expression profiling of the genes induced by Na₂CO₃ and NaCl stresses in leaves and roots of Leymus chinensis. Plant Sci, 2008, 175: 784–792. [5] Wang X P, Jiang P, Ma Y, Geng S J, Wang S C, Shi D C. Physiological strategies of sunflower exposed to salt or alkali stresses: restriction of ion transport in the cotyledon node zone and solute accumulation. Agron J, 2015, 107: 2181–2192.
[6] 李子英, 丛日春, 杨庆山, 周健. 盐碱胁迫对柳树幼苗生长和渗透调节物质含量的影响. 生态学报, 2017, 37: 8511–8517. [7] Feng N J, Yu M L, Li Y, Jin D, Zheng D F. Prohexadione-calcium alleviates saline-alkali stress in soybean seedlings by improving the photosynthesis and up-regulating antioxidant defense. Ecotoxicol Environ Saf, 2021, 220: 112369.
[8] 张会慧, 龙静泓, 王均睿, 吴绪叶, 马松良, 宁强, 许楠. 不同种类盐胁迫对高粱幼苗生长及叶片光合机构功能的影响. 生态学杂志, 2019, 38: 161–172. [9] Nakashima K, Ito Y, Yamaguchi-Shinozaki K. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol, 2009, 149: 88–95. [10] Vestin J L K, Nambu K, van Hees P A W, Bylund D, Lundström U S. The influence of alkaline and non-alkaline parent material on soil chemistry. Geoderma, 2006, 135: 97–106. [11] Liu J, Shi D C. Photosynthesis, chlorophyll fluorescence, inorganic ion and organic acid accumulations of sunflower in responses to salt and salt-alkaline mixed stress. Photosynthetica, 2010, 48: 127–134. [12] Yang Y Q, Guo Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol, 2018, 217: 523–539. [13] Wang L X, Fang C, Wang K. Physiological responses of Leymus chinensis to long-term salt, alkali and mixed salt-alkali stresses. J Plant Nutr, 2015, 38: 526–540. [14] Gong B, Li X, VandenLangenberg K M, Wen D, Sun S S, Wei M, Li Y, Yang F J, Shi Q H, Wang X F. Overexpression of S-adenosyl-L-methionine synthetase increased tomato tolerance to alkali stress through polyamine metabolism. Plant Biotechnol J, 2014, 12: 694–708. [15] Wang X, Ajab Z, Liu C X, Hu S M, Liu J L, Guan Q J. Overexpression of transcription factor SlWRKY28 improved the tolerance of Populus davidiana × P. bolleana to alkaline salt stress. BMC Genet, 2020, 21: 103. [16] Zhao C Y, Pan X W, Yu Y, Zhu Y M, Kong F J, Sun X, Wang F F. Overexpression of a TIFY family gene, GsJAZ2, exhibits enhanced tolerance to alkaline stress in soybean. Mol Breed, 2020, 40: 33. [17] Cui M H, Li Y P, Li J H, Yin F X, Chen X Y, Qin L M, Wei L, Xia G M, Liu S W. Ca²⁺-dependent TaCCD1 cooperates with TaSAUR215 to enhance plasma membrane H⁺-ATPase activity and alkali stress tolerance by inhibiting PP2C-mediated dephosphorylation of TaHA2 in wheat. Mol Plant, 2023, 16: 571–587. [18] Zhang H L, Yu F F, Xie P, Sun S Y, Qiao X H, Tang S Y, Chen C X, Yang S, Mei C, Yang D K, et al. A Gγ protein regulates alkaline sensitivity in crops. Science, 2023, 379: eade8416. [19] Guo S Q, Chen Y X, Ju Y L, Pan C Y, Shan J X, Ye W W, Dong N Q, Kan Y, Yang Y B, Zhao H Y, et al. Fine-tuning gibberellin improves rice alkali-thermal tolerance and yield. Nature, 2025, 639: 162–171. [20] Zhang G F, Peng Y, Zhou J Z, Tan Z D, Jin C, Fang S, Zhong S Z, Jin C W, Wang R Z, Wen X L, et al. Genome-wide association studies of salt-alkali tolerance at seedling and mature stages in Brassica napus. Front Plant Sci, 2022, 13: 857149. [21] Wang W C, Pang J Y, Zhang F H, Sun L P, Yang L, Zhao Y G, Yang Y, Wang Y J, Siddique K H M. Integrated transcriptomics and metabolomics analysis to characterize alkali stress responses in canola (Brassica napus L.). Plant Physiol Biochem, 2021, 166: 605–620. [22] Xu Y, Tao S X, Zhu Y L, Zhang Q, Li P, Wang H, Zhang Y, Bakirov A, Cao H M, Qin M F, et al. Identification of alkaline salt tolerance genes in Brassica napus L. by transcriptome analysis. Genes, 2022, 13: 1493. [23] Ma L, Lian Y T, Li S Y, Fahim A M, Hou X F, Liu L J, Pu Y Y, Yang G, Wang W T, Wu J Y, et al. Integrated transcriptome and metabolome analysis revealed molecular regulatory mechanism of saline-alkali stress tolerance and identified bHLH142 in winter rapeseed (Brassica rapa). Int J Biol Macromol, 2025, 295: 139542. [24] Navarro-León E, Grazioso A, Atero-Calvo S, Rios J J, Esposito S, Blasco B. Evaluation of the alkalinity stress tolerance of three Brassica rapa CAX1 TILLING mutants. Plant Physiol Biochem, 2023, 198: 107712.
[25] 沈金雄, 傅廷栋. 我国油菜生产、改良与食用油供给安全. 中国农业科技导报, 2011, 13(1): 1–8. [26] Zeng L, Cai J S, Li J J, Lu G Y, Li C S, Fu G P, Zhang X K, Ma H Q, Liu Q Y, Zou X L, et al. Exogenous application of a low concentration of melatonin enhances salt tolerance in rapeseed (Brassica napus L.) seedlings. J Integr Agric, 2018, 17: 328–335. [27] Wan H P, Qian J L, Zhang H, Lu H C, Li O Q, Li R H, Yu Y, Wen J, Zhao L, Yi B, et al. Combined transcriptomics and metabolomics analysis reveals the molecular mechanism of salt tolerance of Huayouza 62, an elite cultivar in rapeseed (Brassica napus L.). Int J Mol Sci, 2022, 23: 1279. [28] Chen J D, Zhang H, Tong J Q, Liu C Y, Ran J H, Tang J, Liu J Y, Wen J, Zeng C L, Wan H P, et al. Genome-wide association analysis of root length traits in Brassica napus at germination stage under sodium carbonate stress. Euphytica, 2021, 217: 197. [29] Patel R K, Jain M. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS One, 2012, 7: e30619. [30] Kim D, Paggi J M, Park C, Bennett C, Salzberg S L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol, 2019, 37: 907–915. [31] Pertea M, Pertea G M, Antonescu C M, Chang T C, Mendell J T, Salzberg S L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol, 2015, 33: 290–295. [32] Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15: 550. [33] Yu G C, Wang L G, Han Y Y, He Q Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS, 2012, 16: 284–287. [34] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194–1202. [35] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (−Delta Delta C(T)) Method. Methods, 2001, 25: 402–408. [36] He Y X, Yang X D, Xu C, Guo D Q, Niu L, Wang Y, Li J W, Yan F, Wang Q Y. Overexpression of a novel transcriptional repressor GmMYB3a negatively regulates salt-alkali tolerance and stress-related genes in soybean. Biochem Biophys Res Commun, 2018, 498: 586–591. [37] Wang G D, Shen W Z, Zhang Z N, Guo S, Hu J C, Feng R Q, Zhao Q, Du J D, Du Y L. The effect of neutral salt and alkaline stress with the same Na+ concentration on root growth of soybean (Glycine max (L.) merr.) seedlings. Agronomy, 2022, 12: 2708. [38] 杨闯, 王玲, 全成滔, 余良倩, 戴成, 郭亮, 傅廷栋, 马朝芝. 甘蓝型油菜盐胁迫响应基因表达谱分析及共表达网络的构建. 作物学报, 2024, 50 (1): 237–250. Yang C, Wang L, Quan C T, Yu L Q, Dai C, Guo L, Fu T D, Ma C Z. Relative expression profiles of genes response to salt stress and constructions of gene co-expression networks in Brassica napus L. Acta Agron Sin, 2024, 50(1): 237–250 (in Chinese with English abstract). [39] Wan H P, Wei Y K, Qian J L, Gao Y L, Wen J, Yi B, Ma C Z, Tu J X, Fu T D, Shen J X. Association mapping of salt tolerance traits at germination stage of rapeseed (Brassica napus L.). Euphytica, 2018, 214: 190. [40] Javid M, Ford R, Nicolas M E. Tolerance responses of Brassica juncea to salinity, alkalinity and alkaline salinity. Funct Plant Biol, 2012, 39: 699–707. [41] Sunarpi, Horie T, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan W Y, Leung H Y, Hattori K, et al. Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na unloading from xylem vessels to xylem parenchyma cells. Plant J, 2005, 44: 928–938. [42] Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol, 1980, 31: 149–190. [43] Rathert G. Effects of high salinity stress on mineral and carbohydrate metabolism of two cotton varieties. Plant Soil, 1983, 73: 247–256. [44] Maas E V, Grieve C M. Sodium-induced calcium deficiency in salt-stressed corn. Plant Cell Environ, 1987, 10: 559–564. [45] Muhammed S, Akbar M, Neue H U. Effect of Na/Ca and Na/K ratios in saline culture solution on the growth and mineral nutrition of rice (Oryza sativa L.). Plant Soil, 1987, 104: 57–62. [46] Ali R, Zielinski R E, Berkowitz G A. Expression of plant cyclic nucleotide-gated cation channels in yeast. J Exp Bot, 2006, 57: 125–138. [47] Maathuis F J M, Filatov V, Herzyk P, Krijger G C, Axelsen K B, Chen S X, Green B J, Li Y, Madagan K L, Sánchez-Fernández R, et al. Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress. Plant J, 2003, 35: 675–692. [48] Yong H Y, Zou Z W, Kok E P, Kwan B H, Chow K, Nasu S, Nanzyo M, Kitashiba H, Nishio T. Comparative transcriptome analysis of leaves and roots in response to sudden increase in salinity in Brassica napus by RNA-seq. Biomed Res Int, 2014, 2014: 467395. [49] Gaymard F, Pilot G, Lacombe B, Bouchez D, Bruneau D, Boucherez J, Michaux-Ferrière N, Thibaud J B, Sentenac H. Identification and disruption of a plant shaker-like outward channel involved in K⁺ release into the xylem sap. Cell, 1998, 94: 647–655. [50] Maathuis F J M. The role of monovalent cation transporters in plant responses to salinity. J Exp Bot, 2006, 57: 1137–1147. [51] Shabala S, Cuin T A. Potassium transport and plant salt tolerance. Physiol Plant, 2008, 133: 651–669. [52] Demidchik V, Cuin T A, Svistunenko D, Smith S J, Miller A J, Shabala S, Sokolik A, Yurin V. Arabidopsis root K⁺-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci, 2010, 123: 1468–1479. [53] Chakraborty K, Bose J, Shabala L, Shabala S. Difference in root K⁺ retention ability and reduced sensitivity of K⁺-permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species. J Exp Bot, 2016, 67: 4611–4625. [54] Fang S M, Hou X, Liang X L. Response mechanisms of plants under saline-alkali stress. Front Plant Sci, 2021, 12: 667458. [55] Macovei A, Tuteja N. microRNAs targeting DEAD-box helicases are involved in salinity stress response in rice (Oryza sativa L.). BMC Plant Biol, 2012, 12: 183. [56] Zeng X Q, Chow W S, Su L J, Peng X X, Peng C L. Protective effect of supplemental anthocyanins on Arabidopsis leaves under high light. Physiol Plant, 2010, 138: 215–225. [57] Hatier J B, Gould K S. Foliar anthocyanins as modulators of stress signals. J Theor Biol, 2008, 253: 625–627. [58] Van Oosten M J, Sharkhuu A, Batelli G, Bressan R A, Maggio A. The Arabidopsis thaliana mutant air1 implicates SOS3 in the regulation of anthocyanins under salt stress. Plant Mol Biol, 2013, 83: 405–415. |
[1] | 王彬, 蒙姜宇, 邱浩良, 贺亚军, 钱伟. 甘蓝型油菜BnaDUF579基因家族的鉴定与表达模式分析[J]. 作物学报, 2025, 51(8): 2100-2110. |
[2] | 樊友众, 王先领, 王宗铠, 王春云, 王天尧, 谢捷, 蒯婕, 汪波, 王晶, 徐正华, 赵杰, 周广生. 秸秆还田耦合氮肥运筹对稻茬油菜光合性能及产量的影响[J]. 作物学报, 2025, 51(8): 2139-2151. |
[3] | 李炳霖, 叶晓磊, 肖红, 肖国滨, 吕伟生, 刘君权, 任涛, 陆志峰, 鲁剑巍. 镁肥用量对油菜产量和镁吸收量及因冻害减产程度的影响[J]. 作物学报, 2025, 51(7): 1850-1860. |
[4] | 李世鹏, 陈才武, 张晶, 吕恬, 傅廷栋, 易斌. 基于改进U-Net++模型的油菜pol TCMS温敏两系育性等级鉴定及温度育性关系的量化研究[J]. 作物学报, 2025, 51(6): 1423-1434. |
[5] | 崔鑫, 谷贺贺, 宋毅, 张哲, 刘诗诗, 陆志峰, 任涛, 鲁剑巍. 钾肥用量对油菜产量和钾素积累及因冻害减产程度的影响[J]. 作物学报, 2025, 51(6): 1629-1642. |
[6] | 张金泽, 周庆国, 肖莉晶, 金海润, 欧阳青静, 龙旭, 晏中彬, 田恩堂. 芥菜型油菜不同组织硫苷含量的QTL定位与候选基因分析[J]. 作物学报, 2025, 51(5): 1166-1177. |
[7] | 夏琦, 郭滢, 王坤美, 王思忆, 巨建业, 彭雅雯, 刘忠松, 夏石头. 甘蓝型油菜种子和种皮中水杨酸含量与原花色素积累的关系研究[J]. 作物学报, 2025, 51(5): 1189-1197. |
[8] | 王清华, 朱格格, 方雯, 刘诗诗, 鲁剑巍. 基于高光谱遥感的油菜叶片氮磷养分含量诊断[J]. 作物学报, 2025, 51(5): 1326-1337. |
[9] | 王青, 王伊秀, 李越男, 吕永辉, 张海波, 刘娜, 程红艳. 高、低Cd积累小麦对Cd胁迫的转录组学响应差异[J]. 作物学报, 2025, 51(5): 1230-1247. |
[10] | 王佳婕, 王正楠, BATOOL Maria, 王旺年, 文静, 任长忠, 何峰, 武优悠, 徐正华, 王晶, 蒯婕, 汪波, 周广生, 傅廷栋. 油菜和小麦响应盐碱胁迫的生理特性比较[J]. 作物学报, 2025, 51(5): 1215-1229. |
[11] | 盛倩男, 方娅婷, 赵剑, 杜思垚, 胡行珍, 余秋华, 朱俊, 任涛, 鲁剑巍. 不同养分管理措施对稻田和旱地油菜产量的影响及其对冻害的响应[J]. 作物学报, 2025, 51(5): 1286-1298. |
[12] | 孟孜贞, 刘陈, 盛倩男, 熊志豪, 方娅婷, 赵剑, 余秋华, 王昆昆, 李小坤, 任涛, 鲁剑巍. 氮磷钾肥施用对冬油菜增产效果及因冻害减产程度的影响[J]. 作物学报, 2025, 51(4): 1037-1049. |
[13] | 厍惠洁, 孙明珠, 李世刚, 王东仙, 程泰, 蒋博, 陈爱武, 王晶, 赵杰, 汪波, 蒯婕, 徐正华, 周广生. 黄腐酸、褐藻寡糖包衣对迟播油菜萌发成苗及产量的影响[J]. 作物学报, 2025, 51(4): 1022-1036. |
[14] | 王晓琳, 刘忠松, 康雷, 杨柳. 甘蓝型油菜角果长度和每角粒数基因定位以及角果皮转录组动态分析[J]. 作物学报, 2025, 51(4): 888-899. |
[15] | 张琴, 戴成, 马朝芝. 生长素响应报告基因转化甘蓝型油菜及各组织GUS动态信号分析[J]. 作物学报, 2025, 51(3): 667-675. |
|